Charge transfer complexes of nitroderivatives of 9,10-phenanthreqinone with 9-methyl-9H-carbazole: quantum chemical simulation, x-ray diffraction study

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Within the framework of the density functional theory approximation, quantum-chemical calculations were performed and data on the structure and properties of charge-transfer complexes of 9,10-phenanthrenquinone nitro derivatives with 9-methyl-9 H -carbazole were obtained. The formation energies of complexes, the average distances between the donor and acceptor planes, and the values of charge transfer from the donor to the acceptor have been calculated. The crystal and molecular structure of the complex of 2,4,7-trinitro-9,10-phenanthrenquinone with 9-methyl-9 H -carbazole (C14H5N3O8·C13H11N) was determined by X-ray diffraction analysis. In the crystal of the complex, the donor and acceptor molecules form parallel stacks of the {-D-A-D-A-}mixed type with average interplanar distances of 3.29 and 3.35 Å. Each acceptor molecule forms intermolecular hydrogen bonds C-H···O 2.42-2.69 Å.

作者简介

R. Linko

RUDN University

Email: linko-rv@rudn.ru

M. Ryabov

RUDN University

V. Davydov

RUDN University

V. Khrustalev

RUDN University;N.D. Zelinsky Institute of Organic Chemistry of Russian Academy of Sciences

参考

  1. Mulliken R.S., Person W.B. Molecular Complexes. New York: Wiley-Interscience, 1969. 498 p. doi: 10.1016/0022-2860(71)87071-0
  2. Goetz K.P., Vermeulen D., Payne M.E., Kloc C., McNeil L.E., Jurchescu O.D. // J. Mater. Chem. C. 2014. Vol. 2. N 17. P. 3065. doi: 10.1039/C3TC32062F
  3. Coleman L.B., Cohen M.J., Sandman D.J., Yamagishi F.G., Garito A.F., Heege A.J. // Solid State Commun. 1973. Vol. 12. N 11. P. 1125. doi: 10.1016/0038-1098(73)90127-0
  4. Wosnitza J. // J. Low Temp. Phys. 2007. Vol. 146. P. 641. doi: 10.1007/s10909-006-9282-9
  5. Korshak Yu.V., Medvedeva T.V., Ovchinnikov A.A., Spector V.N. // Nature. 1987. Vol. 326. P. 370. doi: 10.1038/326370a0
  6. Menard E., Podzorov V., Hur S.-H., Gaur A., Gershenson M.E., Rogers J.A. // Adv. Mater. 2004. Vol. 16. P. 2097. doi: 10.1002/adma.200401017
  7. Mukherjee B., Mukherjee M. // Langmuir. 2011. Vol. 27. P. 11246. doi: 10.1021/la201780c
  8. Otero R., Gallego J.M., Vasquez de Parga A.L., Martin N., Miranda R. // Adv. Mater. 2011. Vol. 23. P. 5148. doi: 10.1002/adma.201102022
  9. Suzuki A., Ohtsuki T., Oku T., Akiyama T. // Mater. Sci. Eng. B. 2012. Vol. 177. P. 877. doi: 10.1016/j.mseb.2012.03.052
  10. Shiraishi M., Ikoma T. // Physica (E). 2011. Vol. 43. N 7. P. 1295. doi: 10.1016/j.physe.2011.02.010
  11. Стародуб В.А., Стародуб Т.Н. // Усп. хим. 2014. Т. 83. № 5. С. 391
  12. Starodub V.A., Starodub T.N. // Russ. Chem. Rev. 2014. Vol. 83. N 5. P. 391. doi: 10.1070/RC2014v083n05ABEH004299
  13. Hu P., Du K., Wei F., Jiang H., Kloc C. // Cryst. Growth Des. 2016. Vol. 16. N 5. P. 3019. doi: 10.1021/acs.cgd.5b01675
  14. Singh M., Chopra D. // Cryst. Growth Des. 2018. Vol. 18. N 11. P. 6670. doi: 10.1021/acs.cgd.8b00918
  15. Averkiev B., Isaac R., Jucov E.V., Khrustalev V.N., Kloc C., McNeil L.E., Timofeeva T.V. // Cryst. Growth Des. 2018. Vol. 18. N 7. P. 4095. doi: 10.1021/acs.cgd.8b00501
  16. Saito G., Murata T. // Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2008. Vol. 366. P. 139. doi: 10.1098/rsta.2007.2146
  17. Yee N., Dadvand A., Hamzehpoor E., Titi H.M., Perepichka D.F. // Cryst. Growth Des. 2021. Vol. 21. P. 2609. doi: 10.1021/acs.cgd.1c00309
  18. Hoegl H., Barchietto G., Tar D. // Photochem. Photobiol. 1972. Vol. 16. P. 335. doi: 10.1111/j.1751-1097.1972.tb06303.x
  19. Perepichka I.F., Mysyk D.D., Sokolov N.I. // Synth. Metals. 1999. Vol. 101. P. 9. doi: 10.1016/S0379-6779(98)00630-4
  20. Browning Ch., Hudson J.M., Reinheimer E.W., Kuo F.-L., McDougald R.N.Jr., Rabaâ H., Pan H., Bacsa J., Wang X., Dunbar K.R., Shepherd N.D., Omary M.A. // J. Am. Chem. Soc. 2014. Vol. 136. P. 16185. doi: 10.1021/ja506583k
  21. Bakulin A.A., Martyanov D., Paraschuk D.Yu., van Loosdrecht H.M.P., Pshenichnikov M.S. // Chemical Physics Letters. 2009. Vol.482. P. 99. doi: 10.1016/j.cplett.2009.09.052
  22. Parashchuk O.D., Bruevich V.V., Paraschuk D.Yu. //Phys. Chem. Chem. Phys. 2010. Vol. 12. P. 6021. doi: 10.1039/b927324g
  23. Линко Р.В., Рябов М.А., Страшнов П.В., Полянская Н.А., Давыдов В.В., Дороватовский П.В., Линько И.В., Хрусталев В.Н. // ЖСХ. 2021. Т. 62. С. 141. doi: 10.26902/JSC_id66742
  24. Linko R.V., Ryabov M.A., Strashnov P.V., Polyanskaya N.A., Davydov V.V., Dorovatovskii P.V., Lin'ko I.V., Khrustalev V.N. // J. Struct. Chem. 2021. Vol. 62. P. 137. doi: 10.1134/S0022476621010169
  25. Linko R., Ryabov M., Strashnov P., Dorovatovskii P., Khrustalev V., Davydov V. // Molecules. 2021. Vol. 26. N 21. P. 6391. doi: 10.3390/molecules26216391
  26. Линко Р.В., Рябов М.А., Давыдов В.В., Хрусталев В.Н. // ЖСХ. 2022. Т. 63. № 11. 101104. doi: 10.26902/JSC_id101104
  27. Linko R.V., Ryabov M.A., Davydov V.V., Khrustalev V.N. // J. Struct. Chem. 2022. Vol. 63. P. 1758-1769. doi: 10.1134/S0022476622110051
  28. Линко Р.В., Рябов М.А., Давыдов В.В., Хрусталев В.Н. // ЖСХ. 2023. Т. 64. № 8. 114432. doi: 10.26902/JSC_id114432 (в печати)
  29. Hu P., Wang Sh., Chaturvedi A., Wei F., Zhu X., Zhang X., Li R., Li Y., Jiang H., Long Y., Kloc Ch. // Cryst. Growth Des. 2018. Vol. 18. P. 1776. doi: 10.1021/acs.cgd.7b01669
  30. Гридунова Г.В., Шкловер В.Е., Стручков Ю.Т., Сидоренко Е.Н., Андриевский А.М., Ежкова З.И., Дюмаев К.М. // Изв. АН СССР. Сер. хим. 1986. № 6. С. 1284
  31. Gridunova G.V., Shklover V.E., Struchkov Yu.T., Sidorenko E.N., Andrievskii A.M., Ezhkova Z.I., Dyumaev K.M. // Bull. Acad. Sci. USSR. Div. Chem. Sci. 1986. Vol. 35. N 6. P. 1163. doi: 10.1007/BF00956588
  32. Jiang W., Ma X., Liu D., Zhao G., Tian W., Sun Y. // Dyes and Pigments. 2021. Vol. 193. Article no. 109519. doi: 10.1016/j.dyepig.2021.109519
  33. Kato S., Maezawa M., Hirano S., Ishigaku S. // Yuki Gosei Kagaku Kyokai Shi. 1957. Vol. 15. N 1. P. 29
  34. C. A. 1958. Vol. 51. P. 10462. https://doi.org/10.5059/yukigoseikyokaishi.15.29
  35. Mukherjee T.K. // J. Phys. Chem. 1967. Vol. 71. N 7. P. 2277. doi: 10.1021/j100866a04818
  36. Андриевский А.М., Линко Р.В., Грачев М.К. // ЖОрХ. 2013. Т. 49. № 7. С. 1041
  37. Andrievskii A.M., Linko R.V., Grachev M.K. // Russ. J. Org. Chem. 2013. Vol. 49. N 7. P. 1025. doi: 10.1134/S1070428013070117
  38. Bruker, SAINT, Bruker AXS Inc.: Madison, WI, 2013.
  39. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Cryst. 2015. Vol. 48. P. 3. doi: 10.1107/S1600576714022985
  40. Sheldrick G.M. // Acta Crystallogr. (C). 2015. Vol. 71. P. 3. doi: 10.1107/S2053229614024218
  41. Boys S.F., Bernardi F. // Mol. Phys. 1970. Vol. 19. N 4. P. 553. doi: 10.1080/00268977000101561
  42. Grimme S., Ehrlich S., Goerigk L. // J. Comput. Chem. 2011. Vol. 32. P. 1456. doi: 10.1002/jcc.21759
  43. Glendening E.D., Badenhoop J.K., Reed A.E., Carpenter J.E., Bohmann J.A., Morales C.M., Weinhold F. NBO 5.G. Theoretical Chemistry Institute, University of Wisconsin: Madison, WI, 2004.
  44. Granovsky A.A. Firefly version 8.20. http://classic.chem.msu.su/gran/firefly/index.html.

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##