The role of RNA-protein granules in neurodevelopment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

RNA-protein granules are dynamic, membrane-less organelles found in the nucleus and cytoplasm of cells across nearly all organisms, from the unicellular to the multicellular. They are complex assemblies composed of coding and non-coding RNAs, RNA-binding proteins, enzymes, and other proteins. Functionally, they are hubs for RNA storage, transport, signaling, and regulation of translation. A growing body of evidence now underscores their critical role in orchestrating processes within brain development. These granules facilitate neurodevelopment through the spatiotemporal regulation of gene expression; ensuring proteins are synthesized in the right place and time. For instance, the initial division and differentiation of neural precursor cells rely on mechanisms like transcriptional priming, a process facilitated by specific granules – processing bodies. As brain cells mature, RNA-protein granules enable the transport of transcripts to distant cellular sites. There, they regulate local protein synthesis, which is fundamental for cellular morphology, the maturation of dendritic spines, synaptic plasticity, and overall neural circuit connectivity. Furthermore, stress granules, which form transiently in response to cellular stress, are increasingly recognized as players in the developing central nervous system. It is hypothesized that stress granules promote cell survival during stressful events often accompanying embryonic development. Importantly, mutations in genes encoding RNA-protein granule proteins are associated with an increased risk for neurodevelopmental disorders. These mutations disrupt the dynamic nature of RNA-protein granules, leading to disturbances in mRNA localization and expression. Neurodevelopmental disorders linked to these mutations are often characterized by intellectual disability, speech delay, epileptic seizures, and autism spectrum disorder. The review summarizes the current data on the role of these RNA-protein granules – with a focus on stress granules, processing bodies, and transport granules – in shaping brain development.

About the authors

N. B Illarionova

Institute of Cytology and Genetics, SB RAS

Author for correspondence.
Email: illarionova@bionet.nsc.ru
Novosibirsk, Russia

M. P Moshkin

Institute of Cytology and Genetics, SB RAS; Tomsk State University

Email: illarionova@bionet.nsc.ru

Department of Zoology and Animal Ecology

Novosibirsk, Russia; Tomsk, Russia

References

  1. Advani V.M., Ivanov P., 2020. Stress granule subtypes: An emerging link to neurodegeneration // Cell Mol. Life Sci. V. 77. № 23. P. 4827–4845.
  2. Antar L.N., Afroz R., Dictenberg J.B., Carroll R.C., Bassell G.J., 2004. Metabotropic glutamate receptor activation regulates fragile x mental retardation protein and FMR1 mRNA localization differentially in dendrites and at synapses // J. Neurosci. V. 24. № 11. P. 2648–2655.
  3. Antar L.N., Li C., Zhang H., Carroll R.C., Bassell G.J., 2006. Local functions for FMRP in axon growth cone motility and activity-dependent regulation of filopodia and spine synapses // Mol. Cell Neurosci. V. 32. № 1–2. P. 37–48.
  4. Arimoto K., Fukuda H., Imajoh-Ohmi S., Saito H., Takekawa M., 2008. Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways // Nat. Cell Biol. V. 10. № 11. P. 1324–1332.
  5. Balak C., Benard M., Schaefer E., Iqbal S., Ramsey K., et al., 2019. Rare de novo missense variants in RNA helicase DDX6 cause intellectual disability and dysmorphic features and lead to P-body defects and RNA dysregulation // Am. J. Hum. Genet. V. 105. № 3. P. 509–525.
  6. Batista A.F.R., Martinez J.C., Hengst U., 2017. Intra-axonal synthesis of SNAP25 is required for the formation of presynaptic terminals // Cell Rep. V. 20. № 13. P. 3085–3098.
  7. Bauer K.E., Bargenda N., Schieweck R., Illig C., Segura I., et al., 2022. RNA supply drives physiological granule assembly in neurons // Nat. Commun. V. 13. № 1. Art. 2781.
  8. Bauer K.E., Queiroz B.R., de, Kiebler M.A., Besse F., 2023. RNA granules in neuronal plasticity and disease // Trends Neurosci. V. 46. № 7. P. 525–538.
  9. Begemann A., Sticht H., Begtrup A., Vitobello A., Faivre L., et al., 2021. New insights into the clinical and molecular spectrum of the novel CYFIP2 related neurodevelopmental disorder and impairment of the WRC-mediated actin dynamics // Genet. Med. V. 23. № 3. P. 543–554.
  10. Blake L.A., Watkins L., Liu Y., Inoue T., Wu B., 2024. A rapid inducible RNA decay system reveals fast mRNA decay in P-bodies // Nat. Commun. V. 15. № 1. Art. 2720.
  11. Boulay A.C., Saubamea B., Adam N., Chasseigneaux S., Mazare N., et al., 2017. Translation in astrocyte distal processes sets molecular heterogeneity at the gliovascular interface // Cell Discov. V. 3. Art. 17005.
  12. Bureau I., Shepherd G.M., Svoboda K., 2008. Circuit and plasticity defects in the developing somatosensory cortex of FMR1 knock-out mice // J. Neurosci. V. 28. № 20. P. 5178–5188.
  13. Christie S.B., Akins M.R., Schwob J.E., Fallon J.R., 2009. The FXG: A presynaptic fragile X granule expressed in a subset of developing brain circuits // J. Neurosci. V. 29. № 5. P. 1514–1524.
  14. Cioni J.M., Koppers M., Holt C.E., 2018. Molecular control of local translation in axon development and maintenance // Curr. Opin. Neurobiol. V. 51. P. 86–94.
  15. De Pace R., Ghosh S., Ryan V.H., Sohn M., Jarnik M., et al., 2024. Messenger RNA transport on lysosomal vesicles maintains axonal mitochondrial homeostasis and prevents axonal degeneration // Nat. Neurosci. V. 27. № 6. P. 1087–1102.
  16. Di Marco B., Dell’Albani P., D’Antoni S., Spatuzza M., Bonaccorso C.M., et al., 2021. Fragile X mental retardation protein (FMRP) and metabotropic glutamate receptor subtype 5 (mGlu5) control stress granule formation in astrocytes // Neurobiol. Dis. V. 154. Art. 105338.
  17. Dictenberg J.B., Swanger S.A., Antar L.N., Singer R.H., Bassell G.J., 2008. A direct role for FMRP in activity-dependent dendritic mRNA transport links filopodial-spine morphogenesis to fragile X syndrome // Dev. Cell. V. 14. № 6. P. 926–939.
  18. Didiot M.C., Subramanian M., Flatter E., Mandel J.L., Moine H., 2009. Cells lacking the fragile X mental retardation protein (FMRP) have normal RISC activity but exhibit altered stress granule assembly // Mol. Biol. Cell. V. 20. № 1. P. 428–437.
  19. Dong R., Li X., Flores A.D., Lai K.O., 2023. The translation initiating factor eIF4E and arginine methylation underlie G3BP1 function in dendritic spine development of neurons // J. Biol. Chem. V. 299. № 8. Art. 105029.
  20. Edamakanti C.R., Do J., Didonna A., Martina M., Opal P., 2018. Mutant ataxin1 disrupts cerebellar development in spinocerebellar ataxia type 1 // J. Clin. Invest. V. 128. № 6. P. 2252–2265.
  21. Ehses J., Schlegel M., Schroger L., Schieweck R., Derdak S., et al., 2022. The dsRBP Staufen2 governs RNP assembly of neuronal Argonaute proteins // Nucleic Acids Res. V. 50. № 12. P. 7034–7047.
  22. Fernandopulle M.S., Lippincott-Schwartz J., Ward M.E., 2021. RNA transport and local translation in neurodevelopmental and neurodegenerative disease // Nat. Neurosci. V. 24. № 5. P. 622–632.
  23. Fujii R., Takumi T., 2005. TLS facilitates transport of mRNA encoding an actin-stabilizing protein to dendritic spines // J. Cell Sci. V. 118. № 24. P. 5755–5765.
  24. Fujikawa D., Nakamura T., Yoshioka D., Li Z., Moriizumi H., et al., 2023. Stress granule formation inhibits stress-induced apoptosis by selectively sequestering executioner caspases // Curr. Biol. V. 33. № 10. P. 1967–1981.
  25. Garcia-Cabau C., Bartomeu A., Tesei G., Cheung K.C., Pose-Utrilla J., et al., 2025. Mis-splicing of a neuronal microexon promotes CPEB4 aggregation in ASD // Nature. V. 637. № 8045. P. 496–503.
  26. Geuens T., Bouhy D., Timmerman V., 2016. The hnRNP family: Insights into their role in health and disease // Hum. Genet. V. 135. № 8. P. 851–867.
  27. Goetze B., Tuebing F., Xie Y., Dorostkar M.M., Thomas S., et al., 2006. The brain-specific double-stranded RNA-binding protein Staufen2 is required for dendritic spine morphogenesis // J. Cell Biol. V. 172. № 2. P. 221–231.
  28. Grossman A.W., Aldridge G.M., Weiler I.J., Greenough W.T., 2006. Local protein synthesis and spine morphogenesis: Fragile X syndrome and beyond // J. Neurosci. V. 26. № 27. P. 7151–7155.
  29. Gu J., Liu Z., Zhang S., Li Y., Xia W., et al., 2020. Hsp40 proteins phase separate to chaperone the assembly and maintenance of membraneless organelles // Proc. Natl Acad. Sci. USA. V. 117. № 49. P. 31123–31133.
  30. Hokkanen S., Feldmann H.M., Ding H., Jung C.K., Bojarski L., et al., 2012. Lack of Pur-alpha alters postnatal brain development and causes megalencephaly // Hum. Mol. Genet. V. 21. № 3. P. 473–484.
  31. Holt C.E., Martin K.C., Schuman E.M., 2019. Local translation in neurons: visualization and function // Nat. Struct. Mol. Biol. V. 26. № 7. P. 557–566.
  32. Hooshmandi M., Sharma V., Thorn Perez C., Sood R., Krimbacher K., et al., 2023. Excitatory neuron-specific suppression of the integrated stress response contributes to autism-related phenotypes in fragile X syndrome // Neuron. V. 111. № 19. P. 3028–3040.
  33. Huang H.S., Chen L., Chi J.X., Lai S.Y., Pi J., et al., 2025. Stress granules and cell death: Crosstalk and potential therapeutic strategies in infectious diseases // Cell Death Dis. V. 16. № 1. Art. 495.
  34. Hubstenberger A., Courel M., Benard M., Souquere S., Ernoult-Lange M., et al., 2017. P-body purification reveals the condensation of repressed mRNA regulons // Mol. Cell. V. 68. № 1. P. 144–157.
  35. Illarionova N.B., Morozova K.N., Petrovskii D.V., Sharapova M.B., Romashchenko A.V., et al., 2020. ‘Trojan-Horse’ stress-granule formation mediated by manganese oxide nanoparticles // Nanotoxicology. V. 14. № 10. P. 1432–1444.
  36. Irwin S.A., Galvez R., Greenough W.T., 2000. Dendritic spine structural anomalies in fragile-X mental retardation syndrome // Cereb. Cortex. V. 10. № 10. P. 1038–1044.
  37. Ivashkin E., Khabarova M. Yu., Melnikova V., Nezlin L.P., Kharchenko O., et al., 2015. Serotonin mediates maternal effects and directs developmental and behavioral changes in the progeny of snails // Cell Rep. V. 12. № 7. P. 1144–1158.
  38. Jacquemont S., Pacini L., Jonch A.E., Cencelli G., Rozenberg I., et al., 2018. Protein synthesis levels are increased in a subset of individuals with fragile X syndrome // Hum. Mol. Genet. V. 27. № 12. P. 2039–2051.
  39. Jain S., Wheeler J.R., Walters R.W., Agrawal A., Barsic A., Parker R., 2016. ATPase-modulated stress granules contain a diverse proteome and substructure // Cell. V. 164. № 3. P. 487–498.
  40. Jia X., Zhang S., Tan S., Du B., He M., et al., 2022. De novo variants in genes regulating stress granule assembly associate with neurodevelopmental disorders // Sci. Adv. V. 8. № 33. Art. eabo7112.
  41. Kedersha N., Ivanov P., Anderson P., 2013. Stress granules and cell signaling: More than just a passing phase? // Trends Biochem. Sci. V. 38. № 10. P. 494–506.
  42. Kedersha N., Stoecklin G., Ayodele M., Yacono P., Lykke-Andersen J., et al., 2005. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling // J. Cell Biol. V. 169. № 6. P. 871–884.
  43. Kedia S., Aghanoori M.R., Burns K.M.L., Subha M., Williams L., et al., 2022. Ubiquitination and deubiquitination of 4E-T regulate neural progenitor cell maintenance and neurogenesis by controlling P-body formation // Cell Rep. V. 40. № 2. Art. 111070.
  44. Khayachi A., Gwizdek C., Poupon G., Alcor D., Chafai M., et al., 2018. Sumoylation regulates FMRP-mediated dendritic spine elimination and maturation // Nat. Commun. V. 9. № 1. Art. 757.
  45. Kiebler M.A., Bauer K.E., 2024. RNA granules in flux: Dynamics to balance physiology and pathology // Nat. Rev. Neurosci. V. 25. № 11. P. 711–725.
  46. Kim W.J., Back S.H., Kim V., Ryu I., Jang S.K., 2005. Sequestration of TRAF2 into stress granules interrupts tumor necrosis factor signaling under stress conditions // Mol. Cell Biol. V. 25. № 6. P. 2450–2462.
  47. Kolaj A., Zahr S.K., Wang B.S., Krawec T., Kazan H., et al., 2023. The P-body protein 4E-T represses translation to regulate the balance between cell genesis and establishment of the postnatal NSC pool // Cell Rep. V. 42. № 3. Art. 112242.
  48. Kontsevaya G., Romashchenko A., Babochkina T., Sugatova D., Shevelev O., et al., 2025. Induction of stress granules and developmental instability of offspring phenotype due to hypothermia during first mouse embryo cleavage // Int. J. Mol. Sci. V. 26. № 16. Art. 8060.
  49. Korff A., Yang X., O’Donovan K., Gonzalez A., Teubner B.J., et al., 2023. A murine model of hnRNPH2 related neurodevelopmental disorder reveals a mechanism for genetic compensation by Hnrnph1 // J. Clin. Invest. V. 133. № 14. Art. e160309.
  50. Kreienkamp H.J., Wagner M., Weigand H., McConkie-Rossell A., McDonald M., et al., 2022. Variant-specific effects define the phenotypic spectrum of HNRNPH2 associated neurodevelopmental disorders in males // Hum. Genet. V. 141. № 2. P. 257–272.
  51. Kunde S.A., Musante L., Grimme A., Fischer U., Muller E., et al., 2011. The X-chromosome-linked intellectual disability protein PQBP1 is a component of neuronal RNA granules and regulates the appearance of stress granules // Hum. Mol. Genet. V. 20. № 24. P. 4916–4931.
  52. Lai A., Valdez-Sinon A.N., Bassell G.J., 2020. Regulation of RNA granules by FMRP and implications for neurological diseases // Traffic. V. 21. № 7. P. 454–462.
  53. Lennox A.L., Hoye M.L., Jiang R., Johnson-Kerner B.L., Suit L.A., et al., 2020. Pathogenic DDX3X mutations impair RNA metabolism and neurogenesis during fetal cortical development // Neuron. V. 106. № 3. P. 404–420.
  54. Lepelletier L., Langlois S.D., Kent C.B., Welshhans K., Morin S., et al., 2017. Sonic Hedgehog guides axons via Zipcode binding protein 1 mediated local translation // J. Neurosci. V. 37. № 7. P. 1685–1695.
  55. Lessel D., Schob C., Kury S., Reijnders M.R.F., Harel T., et al., 2017. De novo missense mutations in DHX30 impair global translation and cause a neurodevelopmental disorder // Am. J. Hum. Genet. V. 101. № 5. P. 716–724.
  56. Leung L.C., Urbancic V., Baudet M.L., Dwivedy A., Bayley T.G., et al., 2013. Coupling of NF-protocadherin signaling to axon guidance by cue-induced translation // Nat. Neurosci. V. 16. № 2. P. 166–173.
  57. Li C., Bassell G.J., Sasaki Y., 2009. Fragile X mental retardation protein is involved in protein synthesis-dependent collapse of growth cones induced by semaphorin 3A // Front. Neural. Circuits. V. 3. Art. 11.
  58. Liao Y.C., Fernandopulle M.S., Wang G., Choi H., Hao L., et al., 2019. RNA granules hitchhike on lysosomes for long-distance transport, using annexin A11 as a molecular tether // Cell. V. 179. № 1. P. 147–164.
  59. Lo L.H., Dong R., Lyu Q., Lai K.O., 2020. The protein arginine methyltransferase PRMT8 and substrate G3BP1 control Rac1-PAK1 signaling and actin cytoskeleton for dendritic spine maturation // Cell Rep. V. 31. № 10. Art. 107744.
  60. Ma R., Kim U.S., Chung Y., Kang H.R., Zhang Y., Han K., 2025. Recent advances in CYFIP2 associated neurodevelopmental disorders: From human genetics to molecular mechanisms and mouse models // Brain Dev. V. 47. № 1. Art. 104302.
  61. MacPherson M.J., Erickson S.L., Kopp D., Wen P., Aghanoori M.R., et al., 2021. Nucleocytoplasmic transport of the RNA-binding protein CELF2 regulates neural stem cell fates // Cell Rep. V. 35. № 10. Art. 109226.
  62. Markmiller S., Soltanieh S., Server K.L., Mak R., Jin W., et al., 2018. Context-dependent and disease-specific diversity in protein interactions within stress granules // Cell. V. 172. № 3. P. 590–604.
  63. Mateju D., Franzmann T.M., Patel A., Kopach A., Boczek E.E., et al., 2017. An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function // EMBO J. V. 36. № 12. P. 1669–1687.
  64. Matheny T., Rao B.S., Parker R., 2019. Transcriptome-wide comparison of stress granules and P-bodies reveals that translation plays a major role in RNA partitioning // Mol. Cell Biol. V. 39. № 24. Art. e00313–19.
  65. Meservey L.M., Topkar V.V., Fu M.M., 2021. mRNA transport and local translation in glia // Trends Cell Biol. V. 31. № 6. P. 419–423.
  66. Meyers E.A., Kessler J.A., 2017. TGF-β family signaling in neural and neuronal differentiation, development, and function // Cold Spring Harb. Perspect. Biol. V. 9. № 8. Art. a022244.
  67. Mitsumori K., Takei Y., Hirokawa N., 2017. Components of RNA granules affect their localization and dynamics in neuronal dendrites // Mol. Biol. Cell. V. 28. № 11. P. 1412–1417.
  68. Molitor L., Klostermann M., Bacher S., Merl-Pham J., Spranger N., et al., 2023. Depletion of the RNA-binding protein PURA triggers changes in posttranscriptional gene regulation and loss of P-bodies // Nucleic Acids Res. V. 51. № 3. P. 1297–1316.
  69. Monday H.R., Kharod S.C., Yoon Y.J., Singer R.H., Castillo P.E., 2022. Presynaptic FMRP and local protein synthesis support structural and functional plasticity of glutamatergic axon terminals // Neuron. V. 110. № 16. P. 2588–2606.
  70. Moser J.J., Fritzler M.J., Rattner J.B., 2011. Repression of GW/P body components and the RNAi microprocessor impacts primary ciliogenesis in human astrocytes // BMC Cell Biol. V. 12. Art. 37.
  71. Muller C., Schafer I., Luhmann H.J., White R., 2015. Oligodendroglial argonaute protein Ago2 associates with molecules of the Mbp mRNA localization machinery and is a downstream target of Fyn kinase // Front. Cell Neurosci. V. 9. Art. 328.
  72. Nalavadi V.C., Muddashetty R.S., Gross C., Bassell G.J., 2012. Dephosphorylation-induced ubiquitination and degradation of FMRP in dendrites: A role in immediate early mGluR-stimulated translation // J. Neurosci. V. 32. № 8. P. 2582–2587.
  73. Okazawa H., 2018. PQBP1, an intrinsically disordered/denatured protein at the crossroad of intellectual disability and neurodegenerative diseases // Neurochem. Int. V. 119. P. 17–25.
  74. Parvin S., Takeda R., Sugiura Y., Neyazaki M., Nogi T., Sasaki Y., 2019. Fragile X mental retardation protein regulates accumulation of the active zone protein Munc18–1 in presynapses via local translation in axons during synaptogenesis // Neurosci. Res. V. 146. P. 36–47.
  75. Perycz M., Urbanska A.S., Krawczyk P.S., Parobczak K., Jaworski J., 2011. Zipcode binding protein 1 regulates the development of dendritic arbors in hippocampal neurons // J. Neurosci. V. 31. № 14. P. 5271–5285.
  76. Pushpalatha K.V., Besse F., 2019. Local translation in axons: When membraneless RNP granules meet membrane-bound organelles // Front. Mol. Biosci. V. 6. Art. 129.
  77. Ripin N., Parker R., 2023. Formation, function, and pathology of RNP granules // Cell. V. 186. № 22. P. 4737–4756.
  78. Romashchenko A.V., Kan T.W., Petrovski D.V., Gerlinskaya L.A., Moshkin M.P., Moshkin Y.M., 2017. Nanoparticles associate with intrinsically disordered RNA-binding proteins // ACS Nano. V. 11. № 2. P. 1328–1339.
  79. Saffary R., Xie Z., 2011. FMRP regulates the transition from radial glial cells to intermediate progenitor cells during neocortical development // J. Neurosci. V. 31. № 4. P. 1427–1439.
  80. Sahoo P.K., Agrawal M., Hanovice N., Ward P.J., Desai M., et al., 2025. Disruption of G3BP1 granules promotes mammalian CNS and PNS axon regeneration // Proc. Natl Acad. Sci. USA. V. 122. № 9. Art. e2411811122.
  81. Sakers K., Lake A.M., Khazanchi R., Ouwenga R., Vasek M.J., et al., 2017. Astrocytes locally translate transcripts in their peripheral processes // Proc. Natl Acad. Sci. USA. V. 114. № 19. P. E3830–E3838.
  82. Schneider F., Metz I., Rust M.B., 2023. Regulation of actin filament assembly and disassembly in growth cone motility and axon guidance // Brain Res. Bull. V. 192. P. 21–35.
  83. Standart N., Weil D., 2018. P-bodies: Cytosolic droplets for coordinated mRNA storage // Trends Genet. V. 34. № 8. P. 612–626.
  84. Starke E.L., Zius K., Barbee S.A., 2022. FXS causing missense mutations disrupt FMRP granule formation, dynamics, and function // PLoS Genet. V. 18. № 2. Art. e1010084.
  85. Stevenson R.E., Bennett C.W., Abidi F., Kleefstra T., Porteous M., et al., 2005. Renpenning syndrome comes into focus // Am. J. Med. Genet. A. V. 134. № 4. P. 415–421.
  86. Tapia V.E., Nicolaescu E., McDonald C.B., Musi V., Oka T., et al., 2010. Y65C missense mutation in the WW domain of the Golabi-Ito-Hall syndrome protein PQBP1 affects its binding activity and deregulates pre-mRNA splicing // J. Biol. Chem. V. 285. № 25. P. 19391–19401.
  87. Tauber D., Tauber G., Parker R., 2020. Mechanisms and regulation of RNA condensation in RNP granule formation // Trends Biochem. Sci. V. 45. № 9. P. 764–778.
  88. Taylor A.M., Wu J., Tai H.C., Schuman E.M., 2013. Axonal translation of beta-catenin regulates synaptic vesicle dynamics // J. Neurosci. V. 33. № 13. P. 5584–5589.
  89. Ugrumov M.V., 2010. Developing brain as an endocrine organ: A paradoxical reality // Neurochem. Rec. V. 35. № 6. P. 837–850.
  90. Valdez-Sinon A.N., Lai A., Shi L., Lancaster C.L., Gokhale A., et al., 2020. Cdh1-APC regulates protein synthesis and stress granules in neurons through an FMRP-dependent mechanism // iScience. V. 23. № 5. Art. 101132.
  91. Vasek M.J., Mueller S.M., Fass S.B., Deajon-Jackson J.D., Liu Y., et al., 2023. Local translation in microglial processes is required for efficient phagocytosis // Nat. Neurosci. V. 26. № 7. P. 1185–1195.
  92. Vessey J.P., Macchi P., Stein J.M., Mikl M., Hawker K.N., et al., 2008. A loss of function allele for murine Staufen1 leads to impairment of dendritic Staufen1-RNP delivery and dendritic spine morphogenesis // Proc. Natl Acad. Sci. USA. V. 105. № 42. P. 16374–16379.
  93. Voronezhskaya E.E., Ivashkin E.G., Nezlin L.P., 2012. Delayed action of serotonin in molluskan development // Acta Biol. Hungarica. V. 63. № 1. P. 210–216.
  94. Wang L., Guo Q., Acharya S., Zheng X., Huynh V., et al., 2024. Primary cilia signaling in astrocytes mediates development and regional-specific functional specification // Nat. Neurosci. V. 27. № 9. P. 1708–1720.
  95. Wang Q., Moore M.J., Adelmant G., Marto J.A., Silver P.A., 2013. PQBP1, a factor linked to intellectual disability, affects alternative splicing associated with neurite outgrowth // Genes Dev. V. 27. № 6. P. 615–626.
  96. White R., Gonsior C., Bauer N.M., Kramer-Albers E.M., Luhmann H.J., Trotter J., 2012. Heterogeneous nuclear ribonucleoprotein (hnRNP) F is a novel component of oligodendroglial RNA transport granules contributing to regulation of myelin basic protein (MBP) synthesis // J. Biol. Chem. V. 287. № 3. P. 1742–1754.
  97. Yoon Y.J., Wu B., Buxbaum A.R., Das S., Tsai A., et al., 2016. Glutamate-induced RNA localization and translation in neurons // Proc. Natl Acad. Sci. USA. V. 113. № 44. P. E6877–E6886.
  98. Youn J.Y., Dunham W.H., Hong S.J., Knight J.D.R., Bashkurov M., et al., 2018. High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies // Mol. Cell. V. 69. № 3. P. 517–532.
  99. Youn J.Y., Dyakov B.J.A., Zhang J., Knight J.D.R., Vernon R.M., et al., 2019. Properties of stress granule and P-body proteomes // Mol. Cell. V. 76. № 2. P. 286–294.
  100. Zahr S.K., Kaplan D.R., Miller F.D., 2019. Translating neural stem cells to neurons in the mammalian brain // Cell Death Differ. V. 26. № 12. P. 2495–2512.
  101. Zahr S.K., Yang G., Kazan H., Borrett M.J., Yuzwa S.A., et al., 2018. A translational repression complex in developing mammalian neural stem cells that regulates neuronal specification // Neuron. V. 97. № 3. P. 520–537.
  102. Zhang S., Hinde E., Parkyn Schneider M., Jans D.A., Bogoyevitch M.A., 2020. Nuclear bodies formed by polyQ-ataxin 1 protein are liquid RNA/protein droplets with tunable dynamics // Sci. Rep. V. 10. № 1. Art. 1557.
  103. Zhang X.Y., Qi J., Shen Y.Q., Liu X., Liu A., et al., 2017. Mutations of PQBP1 in Renpenning syndrome promote ubiquitin-mediated degradation of FMRP and cause synaptic dysfunction // Hum. Mol. Genet. V. 26. № 5. P. 955–968.
  104. Zhang Y., Kang H.R., Jun Y., Kang H., Bang G., et al., 2024. Neurodevelopmental disorder-associated CYFIP2 regulates membraneless organelles and eIF2alpha phosphorylation via protein interactors and actin cytoskeleton // Hum. Mol. Genet. V. 33. № 19. P. 1671–1687.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».