Peculiarities of Siberian fir photosynthesis model as a result of plant adaptation to environmental conditions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Siberian fir (Abies sibirica Ledeb.) is one of the main forest-forming species of northeastern European Russia. Compared to other forest-forming species, Siberian fir is poorly studied and there are no integral models describing the dynamics of fir photosynthesis depending on environmental factors and growing conditions. Modeling of intensity of fir photosynthesis depending on vertical gradients of environmental factors and anatomo-morphological structure of Siberian fir needles varying from the location within the vegetation canopy by height is the purpose of the present study. The study was conducted in the middle taiga subzone of the Komi Republic in a bilberry-sphagnum spruce forest at two altitudinal levels. The objects of the study are represented by two Siberian fir trees occupying different positions in the stand structure, one being a part of the main tier, the other being a part of the second tier. The CO2 assimilation rate of fir needles, the intensity of incident photosynthetically active radiation, air temperature, relative air humidity, and atmospheric CO2 concentration were measured in the crowns of selected trees on uncut shoots; the anatomical and morphological structure of fir needles depending on their height position in the stand structure was studied. A regression equation modeling the dependence of CO2 assimilation rate by Siberian fir needles on environmental factors was obtained on the basis of experimental data. Validation showed the adequacy and statistical significance of the model. Specificity of the model and anatomo-morphological features of Siberian fir needles depending on their height in the stand was revealed.

About the authors

S. I. Tarasov

Institute of Biology, Komi Science Centre, Ural Branch, RAS

Author for correspondence.
Email: tarasov@ib.komisc.ru
Russian Federation, Kommunisticheskaya st., 28, Syktyvkar, Komi Republic, 167982

N. V. Gerling

Institute of Biology, Komi Science Centre, Ural Branch, RAS

Email: gerling@ib.komisc.ru
Russian Federation, Kommunisticheskaya st., 28, Syktyvkar, Komi Republic, 167982

References

  1. Биопродукционный процесс в лесных экосистемах Севера, 2001. СПб.: Наука. 278 с.
  2. Браммер Ю.А., Пащук И.Н., 1976. Импульсная техника. М.: Высш. шк. 319 с.
  3. Галенко Э.П., 1983. Фитоклимат и энергетические факторы продуктивности хвойного леса Европейского Севера. Л.: Наука. 129 с.
  4. Коппель А.Т., Ваииико К.Х., 1988. Изменчивость и экофизиологическая роль предварительных двориков устьиц хвои ели европейской // Лесоведение. № 4. С. 11–16.
  5. Коренные еловые леса Севера: биоразнообразие, структура, функция, 2006. СПб.: Наука. 337 с.
  6. Маслова Т.Г., Попова И.А., Попова О.Ф., 1986. Критическая оценка спектрофотометрического метода количественного определения каротиноидов // Физиология растений. Т. 33. № 3. С. 615–619.
  7. Мокроносов А.Т., Багаутдинов Р.И., Бубнова Е.А., Кобелева И.В., 1973. Фотосинтетический метаболизм в палисадной и губчатой тканях листа // Физиология растений. Т. 20. № 6. С. 1191–1197.
  8. Ризниченко Г.Ю., 2003. Математические модели в биофизике и экологии. М.; Ижевск: Институт компьютерных исследований. 184 с.
  9. Росс Э.У., 1959. Ведение в кибернетику. М.: Изд-во Иностранной литературы. 432 с.
  10. Тарасенко Ф.П., 2015. Прикладной системный анализ. М.: КНОРУС. 220 с.
  11. Тарасов С.И., Герлинг Н.В., 2021. Новый подход к оценке площади поверхности хвои пихты сой // Лесоведение. № 2. С. 217–224.
  12. Тарасов С.И., Герлинг Н.В., 2022. Измерение потоков СО2 и Н2О между средой и растениями сспользованием инфракрасных газоанализаторов на основе открытых систем газообмена: инструментальная ошибка // Науч. приборостроение. Т. 32. № 3. С. 75–103.
  13. Торнли Дж.Г.М., 1982. Математические модели в физиологии растений. Киев: Наукова думка. 312 с.
  14. Цельникер Ю.Л., Выгодская Н.Н., Милюкова И.М., Корзухин М.Д., 2002. Влияние условий погоды на фотосинтез ели (Picea abies). Проблемы экологического мониторинга и моделирования экосистем. Т. XVIII. СПб.: Гидрометеоиздат. С. 337–357.
  15. Эзау К., 1980. Анатомия семенных растений. М.: Мир. Т. 2. 558 с.
  16. Caemmerer S., von, 2000. Biochemical Models of Leaf Photosynthesis. Collingwood: CSIRO Publishing. 165 p.
  17. Farquhar G.D., Caemmererand S., von, Berry J.A., 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species // Planta. V. 149. P. 78–90.
  18. Gaëlle D., Thierry S., Hervé C., Laurent U., 2010. An overview of models of stomatal conductance at the leaf level // Plant Cell Environ. V. 33. P. 1419–1438. https://doi.org/10.1111/j.1365-3040.2010.02181.x
  19. Gutschick V.P., Simonneau T., 2002. Modelling stomatal conductance of field-grown sunflower under varying soil water content and leaf environment: Comparison of three models of stomatal response to leaf environment and coupling with an abscisic acid based model of stomatal response to soil drying // Plant Cell Environ. V. 25. P. 1423–1434.
  20. Hari P., Hänninen H., Berninger F., Kolari P., Nikinmaa E., Mäkelä A., 2009. Predicting boreal conifer photosynthesis in field conditions // Boreal Environ. Res. V. 14 (suppl. A). P. 19–28.
  21. Hari P., Mäkelä A., 2003. Annual pattern of photosynthesis in Scots pine in the boreal zone // Tree Physiol. V. 23. P. 145–155.
  22. June T., Farquhar G.D., Evans J.R., 1997. Short term effects of temperature on electron transport capacity as determined by whole leaf fluorescence measurement // Annual Report Research School of Biological Sciences, Institute of Advanced Studies, Australian National University / Eds Ball M., Clark-Walker G.D., Farquhar G.D., Gunning B.E.S., Morgan I.G., Osmond C.B. Canberra: Australian National University. 99 p.
  23. Korpilahti E., 1988. Photosynthetic production of Scots pine in the natural environment // Acta Forestalia Fennica. № 202. Art. 7649. https://doi.org/10.14214/aff.7649
  24. LI-COR, Inc., 2003. Using the LI-6400. Portable photosynthesis system. OPEN Software version 5.1. 1998–2003. 846 p.
  25. LI-COR: Interfacing custom chambers to the LI-6400 sensor head, 2016. https://www.licor.com/env/support/LI-6400/topics/custom-chamber.html
  26. Lichtenthaler H.K., 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes // Method Enzymol. V. 148. P. 350–382.
  27. Mäkelä A., Landsberg J., Ek A.R., Burk T.E., Ter-Mikaelian M., et al., 2000. Process-based models for forest ecosystem management: Current state of the art and challenges for practical implementation // Tree Physiol. V. 20. P. 289–298.
  28. Olsson R., 2009. Boreal Forest and Climate Change. AirClim report 23. Göteborg: Air Pollution and Climate Secretariat. 32 р.
  29. Schulze E.-D., Beck E., Müller-Hohenstein K., 2005. Plant Ecology. Berlin; Heidelberg: Springer. 702 p.
  30. Severance F.L., 2009. System Modeling and Simulation: An Introduction. N.-Y.: Wiley. 520 p.
  31. Soja A.J., Tchebakova N.M., French N.H.F., Flannigan M.D., Shugart H.H., et al., 2007. Climate-induced boreal forest change: Predictions versus current observations // Global Planet. Change. V. 56. P. 274–296.
  32. Volk T., 2010. СО2 Rising: The World’s Greatest Environmental Challenge. Cambridge: MIT Press. 240 p.
  33. Weiss I., Mizrahi Y., Raveh E., 2009. Chamber response time: A neglected issue in gas exchange mments // Photosynthetica. V. 47. № 1. P. 121–124.

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies