Ecosystem approach in nature conservation: Global experience and modern challenges for Russia
- Authors: Dudov S.V.1,2, Dzizyurova V.D.1,3, Dudova K.V.1,4, Bocharnikov M.V.1
-
Affiliations:
- Lomonosov Moscow State University
- Vitus Bering Kamchatka State University
- Botanical Garden-Institute of the Far-Eastern Branch of RAS
- Severtsov Institute of Ecology and Evolution, RAS
- Issue: Vol 86, No 2 (2025)
- Pages: 83-99
- Section: (Indexed in “Current Contents”)
- URL: https://journals.rcsi.science/0044-4596/article/view/294642
- DOI: https://doi.org/10.31857/S0044459625020013
- EDN: https://elibrary.ru/AIOZYM
- ID: 294642
Cite item
Abstract
Finding solutions against the global biodiversity crisis is a key question in conservation biology. The ecosystem approach in biodiversity conservation is aimed at maintaining the connections and interactions between elements. The need for such an approach is dictated by the objectives of biodiversity management and natural resource conservation. Maintaining the integrity of communities and ecosystems helps protect species diversity and preserve ecosystem functions. To achieve economic and conservation goals, it is necessary to determine which ecosystems are vulnerable and which are sustainable. Such assessments are rapidly developed in world science, and the principles are considered in the methodology of the International Union for Conservation of Nature (IUCN) Red List of Ecosystems. The methodology is recognized as an international standard in assessing the ecosystem collapse risk due to decline in distribution, restricted geographic distribution with continuing declines or threats, abiotic degradation, disruption to biotic processes the cumulative impact of factors. The use of the IUCN ecosystem vulnerability criteria provides comparable assessments of the state of terrestrial, marine and freshwater ecosystems. Assessment according to the IUCN criteria is a multidisciplinary scientific task, for the solution of which a variety of materials and analytical tools are used, including remote sensing data and mathematical modeling. The objective of the review is to reveal the principles of the methodology for assessing the vulnerability of ecosystems. The fundamental terms and concepts of the approach are considered, possible methodological solutions for assessment according to each criteria are discussed using forests as an example. Inclusion of this methodology in the practice of nature conservation in Russia will allow creating a national Red List of ecosystems. It will be the basis for determining regional and national priorities in the field of biodiversity protection and management decisions in nature management based on fundamental research.
Keywords
About the authors
S. V. Dudov
Lomonosov Moscow State University; Vitus Bering Kamchatka State University
Author for correspondence.
Email: serg.dudov@gmail.com
Biological Faculty
Russian Federation, Leninskie Gory, 1, Bld. 12, Moscow, 119234; Pogranichnaya, 4, Petropavlovsk-Kamchatsky, 683032V. D. Dzizyurova
Lomonosov Moscow State University; Botanical Garden-Institute of the Far-Eastern Branch of RAS
Email: serg.dudov@gmail.com
Biological Faculty
Russian Federation, Leninskie Gory, 1, Bld. 12, Moscow, 119234; Makovsky, 142, Vladivostok, 690024K. V. Dudova
Lomonosov Moscow State University; Severtsov Institute of Ecology and Evolution, RAS
Email: serg.dudov@gmail.com
Biological Faculty
Russian Federation, Leninskie Gory, 1, Bld. 12, Moscow, 119234; Leninsky Prospect, 33, Moscow, 119071M. V. Bocharnikov
Lomonosov Moscow State University
Email: serg.dudov@gmail.com
Geography Faculty, Department of Biogeography
Russian Federation, Leninskie Gory, 1, Moscow, 119991References
- Аксенов Д.Е., Глушков И.В., Дубинин М.Ю., Карпачевский М.Л., Кобяков К.Н. и др., 2006. Выделение лесов высокой природоохранной ценности в Приморском крае. Категории, важные для сохранения растительного покрова. М.: МСоЭС. 186 с.
- Андерссон Л., Алексеева Н.М., Кузнецова Е.С., 2009. Выявление и обследование биологически ценных лесов на Северо-Западе Европейской части России. Т. 1. Методика выявления и картографирования. СПб.: Типография “Победа”. 238 с.
- Болотова Н.Л., 2021. Перспективы создания Красной книги экосистем (RLE) для сохранения биоразнообразия ООПТ // Заповедники и национальные парки – научно-исследовательские лаборатории под открытым небом: Мат-лы Всеросс. науч.-практ. конф. с междунар. участием, Петрозаводск, 12–14 октября 2021 г. / Отв. ред. Ильмаст Н.В. Петрозаводск: КарНЦ РАН. С. 90–94.
- Буйволов Ю.А., Парамонов С.Г., Громов С.А., 2021. Комплексный фоновый мониторинг в биосферных заповедниках России: триумф или фиаско? // Вопросы географии. Т. 152. С. 101–134.
- Вернадский В.И., 1926. Биосфера. Т. 1–2. Л.: Госхимиздат. 157 c.
- ГОСТ Р 59782–2021 Охрана окружающей среды. Биологическое разнообразие. Рекомендации по формированию и реализации коммерческой организацией программы по сохранению биологического разнообразия, 2022 // Электронный фонд нормативно-технической и нормативно-правовой информации Консорциума “Кодекс”. https://docs.cntd.ru/document/1200181381
- Коропачинский И.Ю. (ред.), 1996. Зеленая книга Сибири: редкие и нуждающиеся в охране растительные сообщества. Новосибирск: Наука. Сиб. издат. фирма РАН. 397 с.
- Крестов П.В., Верхолат В.П., 2003. Редкие растительные сообщества Приморья и Приамурья. Владивосток: Биолого-почвенный ин-т ДВО РАН. 200 с.
- Крестов П.В., Корзников К.А., Кислов Д.Е., 2020. Коренные изменения наземных экосистем в России в XXI веке // Вестн. РАН. Т. 90. № 6. С. 514–521.
- Лавриненко И.А., Лавриненко О.В., 2020. Местообитания восточноевропейских тундр и их соотношение с категориями EUNIS на примере заповедника “Ненецкий” // Фиторазнообразие Восточной Европы. Т. 14. № 4. С. 359–397.
- Лукина Н.В., Гераськина А.П., Горнов А.В., Шевченко Н.Е., Куприн А.В. и др., 2020. Биоразнообразие и климаторегулирующие функции лесов: актуальные вопросы и перспективы исследований // Вопр. лесн. науки. Т. 3. № 4. С. 1–90. https://doi.org/10.31509/2658-607x-2020-3-4-1-90
- Огуреева Г.Н. (ред.), 2018. Биомы России. Карта (м. 1 : 7500000) в серии карт природы для высшей школы. М. 1 л.
- Огуреева Г.Н., 2020. Проблемы биоразнообразия редких растительных сообществ и их охраны // Биологическое разнообразие Кавказа и юга России. Мат-лы XXII междунар. науч. конф. Грозный, 04– 06 ноября 2020 г. / Отв. ред. Автаева Т.В. Махачкала: Типография Алеф. C. 39–42.
- Огуреева Г.Н., Леонова Н.Б., Микляева И.М., Бочарников М.В., Федосов В.Э. и др., 2020. Биоразнообразие биомов России. Равнинные биомы. М.: ФГБУ “ИГКЭ”. 623 с.
- Паженков А.С., Смелянский И.Я., Трофимова Т.А., Карякин И.В., 2005. Экологическая сеть Республики Башкортостан. М.: IUCN. 198 с.
- Слащев Д.Н., Санников П.Ю., 2011. Леса высокой природоохранной ценности северо-запада Пермского края // Географ. вестн. Т. 2. С. 66–72.
- Сочава В.Б., 1978. Введение в учение о геосистемах. Новосибирск: Наука. 319 с.
- Стратегия сохранения редких и находящихся под угрозой исчезновения видов животных, растений и грибов в Российской Федерации на период до 2030 года, 2014. http://static.government.ru/media/files/41d4c1cf824b2d7be05c.pdf
- Сукачев В.Н., 1931. Руководство к исследованию типов леса. М; Л.: Госиздат. cельхоз. и колх.-кооп. 328 с.
- Сукачев В.Н., Зонн С.В., 1961. Методические указания к изучению типов леса. М.: Изд-во АН СССР. 144 с.
- Тишков А.А., 2015. Биогеография антропоцена северной Евразии // Изв. РАН. Сер. геогр. Т. 6. С. 7–23. https://doi.org/10.15356/0373-2444-2015-6-7-23
- Хорошев А.В., Немчинова А.В., Авданин В.О., 2013. Ландшафты и экологическая сеть Костромской области. Ландшафтно-географические основы проектирования экологической сети Костромской области. Кострома: КГУ им. Н.А. Некрасова. 428 с.
- Alaniz A.J., Galleguillos M., Perez-Quezada J.F., 2016. Assessment of quality of input data used to classify ecosystems according to the IUCN Red List methodology: The case of the central Chile hotspot // Biol. Conserv. V. 204. P. 378–385. https://doi.org/10.1016/j.biocon.2016.10.038
- Alaniz A.J., Pérez-Quezada J.F., Galleguillos M., Vásquez A.E., Keith D.A., 2019. Operationalizing the IUCN Red List of Ecosystems in public policy // Conserv. Lett. V. 12. № 5. Art. e12665. https://doi.org/10.1111/conl.12665
- Alcaraz D., Paruelo J., Cabello J., 2006. Identification of current ecosystem functional types in the Iberian Peninsula // Global Ecol. Biogeogr. V. 15. № 2. P. 200–212.
- Bland L.M., Keith D.A., Miller R.M., Murray N.J., Rodríguez J.P. (eds.), 2017. Guidelines for the Application of IUCN Red List of Ecosystems Categories and Criteria, version 1.1. Gland: IUCN. 99 p. https://doi.org/10.2305/IUCN.CH.2016.RLE.3.en
- Botts E.A., Skowno A., Driver A., Holness S., Maze K., et al., 2020. More than just a (red) list: Over a decade of using South Africa’s threatened ecosystems in policy and practice // Biol. Conserv. V. 246. Art. 108559. https://doi.org/10.1016/j.biocon.2020.108559
- Burns E.L., Lindenmayer D.B., Stein J., Blanchard W., McBurney L., et al., 2015. Ecosystem assessment of mountain ash forest in the Central Highlands of Victoria, South‐Eastern Australia // Austral. Ecol. V. 40. № 4. P. 386–399. https://doi.org/10.1111/aec.12200
- Cambrone C., Jean-Pierre A., Bezault E., Cézilly F., 2023. Identifying global research and conservation priorities for Columbidae: A quantitative approach using random forest models // Front. Ecol. Evol. V. 11. Art. 1141072. https://doi.org/10.3389/fevo.2023.1141072
- Cardinale B., 2012. Impacts of biodiversity loss // Science. V. 336. № 6081. P. 552–553.
- Cazorla B.P., Cabello J., Peñas J., Garcillán P.P., Reyes A., Alcaraz-Segura D., 2021. Incorporating ecosystem functional diversity into geographic conservation priorities using remotely sensed ecosystem functional types // Ecosystems. V. 24. № 3. P. 548–564. https://doi.org/10.1007/s10021-020-00533-4
- Chen G., Wang X., Ma K., 2020. Red list of China’s forest ecosystems: A conservation assessment and protected area gap analysis // Biol. Conserv. V. 248. P. 1–9. https://doi.org/10.1016/j.biocon.2020.108636
- Chytrý M., Hájek M., Kočí M., Pešout P., Roleček J., et al., 2019. Red list of habitats of the Czech Republic // Ecol. Indic. V. 106. Art. 105446. https://doi.org/10.1016/j.ecolind.2019.105446
- Chytrý M., Tichý L., Hennekens S.M., Knollová I., Janssen J.A.M., et al., 2020. EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats // Appl. Veg. Sci. V. 23. P. 648–675. https://doi.org/10.1111/avsc.12519
- Comer P.J., Hak J.C., Reid M.S., Auer S.L., Schulz K.A., et al., 2019. Habitat climate change vulnerability index applied to major vegetation types of the western interior United States // Land. V. 8. № 7. Art. 108. https://doi.org/10.3390/land8070108
- Corlett R.T., 2015. The Anthropocene concept in ecology and conservation // Trends Ecol. Evol. V. 30. № 1. P. 36–41. https://doi.org/10.1016/j.tree.2014.10.007
- Cox C.B., Moore P.D., 2000. Biogeography: An Ecological and Evolutionary Approach. Oxford: Blackwell Scientific Publications. 298 p. https://doi.org/10.1177/030913339401800315
- Crutzen P.J., Stoermer E.F., 2000. The “Anthropocene” // Global Change Newsletter. V. 41. P. 17–18.
- DellaSala D.A., Strittholt J.R., Degagne R., Mackey B., Werner J.R., et al., 2021. Red-listed ecosystem status of interior wetbelt and inland temperate rainforest of British Columbia, Canada // Land. V. 10. № 8. Art. 775. https://doi.org/10.3390/land10080775
- Di Minin E., Correia R.A., Toivonen T., 2022. Quantitative conservation geography // Trends Ecol. Evol. V. 37. № 1. P. 42–52. https://doi.org/10.1016/j.tree.2021.08.009
- Díaz S., Malhi Y., 2022. Biodiversity: concepts, patterns, trends, and perspectives // Annu. Rev. Environ. Resour. V. 47. № 1. P. 31–63. https://doi.org/10.1146/annurev-environ-120120-054300
- Díaz S.M., Settele J., Brondízio E., Ngo H., Guèze M., et al., 2019. The Global Assessment Report on Biodiversity and Ecosystem Services: Summary for Policy Makers. Bonn: IPBES. 56 p. https://doi.org/10.5281/zenodo.3553579
- Dinerstein E., Olson D.P., Joshi A., Vynne C., Burgess N.D., et al., 2017. An ecoregion-based approach to protecting half the terrestrial realm // BioScience. V. 67. P. 534–545. https://doi.org/10.1093/biosci/bix014
- Ellison A.M., Bank M.S., Clinton B.D., Colburn E.A., Elliott K., et al., 2005. Loss of foundation species: Consequences for the structure and dynamics of forested ecosystems // Front. Ecol. Environ. V. 3. № 9. P. 479–486. https://doi.org/10.1890/1540-9295(2005)003[0479: LOFSCF]2.0.CO;2
- Essl F., Dullinger S., Moser D., Rabitsch W., Kleinbauer I., 2012. Vulnerability of mires under climate change: implications for nature conservation and climate change adaptation // Biodivers. Conserv. V. 21. P. 655–669. https://doi.org/10.1007/s10531-011-0206-x
- Eyre T.J., Kelly A.L., Neldner V.J., Wilson B.A., Ferguson D.J., et al., 2015. BioCondition: A Condition Assessment Framework for Terrestrial Biodiversity in Queensland. Assessment manual, Version 2.2. Brisbane: Department of Science, Information Technology, Innovation and the Arts. 81 p.
- Fahrig L., 2001. How much habitat is enough? // Biol. Conserv. V. 100. P. 65–74. https://doi.org/10.1016/S0006-3207(00)00208-1
- Ferrer-Paris J.R., Zager I., Keith D.A., Oliveira‐Miranda M.A., Rodríguez J.P., et al., 2019. An ecosystem risk assessment of temperate and tropical forests of the Americas with an outlook on future conservation strategies // Conserv. Lett. V. 12. № 2. Art. e12623. https://doi.org/10.1111/conl.12623
- Gann G.D., McDonald T., Walder B., Aronson J., Nelson C.R., et al., 2019. International principles and standards for the practice of ecological restoration // Restor. Ecol. V. 27. № S1. P. S1–S46. https://doi.org/10.1111/rec.13035
- García-Díaz P., Prowse T.A., Anderson D.P., Lurgi M., Binny R.N., Cassey P., 2019. A concise guide to developing and using quantitative models in conservation management // Conserv. Sci. Pract. V. 1. № 2. Art. e11. https://doi.org/10.1002/csp2.11
- Gigante D., Acosta A.T.R., Agrillo E., Armiraglio S., Assini S., et al., 2018. Habitat conservation in Italy: The state of the art in the light of the first European Red List of Terrestrial and Freshwater Habitats // Rend. Lincei. Sci. Fis. Nat. V. 29. P. 251–265. https://doi.org/10.1007/s12210-018-0688-5
- Guisan A., Thuiller W., Zimmermann N.E., 2017. Habitat suitability and distribution models: with applications in R. Cambridge: Cambridge Univ. Press. 462 p. https://doi.org/10.1017/9781139028271
- Gunin P.D., Saandar M. (eds.), 2019. Ecosystems of Mongolia. Atlas. Ulaanbatar; Moscow: KMK Scientific Press Admon. 264 p.
- Haddad N.M., Brudvig L.A., Clobert J., Davies K.F., Gonzalez A., et al., 2015. Habitat fragmentation and its lasting impact on Earth’s ecosystems // Sci. Adv. V. 1. № 2. Art. e1500052. https://doi.org/10.1126/sciadv.1500052
- Holdridge L.R., 1967. Life Zone Ecology. San Jose: Tropical Science Center. 206 p.
- Hooper D.U., Adair E.C., Cardinale B.J., Byrnes J.E.K., Hungate B.A., et al., 2012. A global synthesis reveals biodiversity loss as a major driver of ecosystem change // Nature. V. 486. № 7401. P. 105–108. https://doi.org/10.1038/nature11118
- IFC, 2019. Guidance Note 6: Biodiversity Conservation and Sustainable Management of Living Natural Resources. https://www.ifc.org/en/insights-reports/2012/ifc-performance-standard-6
- Janssen J.A.M., Rodwell J.S., García Criado M., Gubbay S., Haynes T., et al., 2016. European Red List of Habitats. Part 2: Terrestrial and freshwater habitats. Brussels: European Commission. 39 p. https://doi.org/10.2779/091372
- Justus J., Wakil S., 2021. The algorithmic turn in conservation biology: Characterizing progress in ethically-driven sciences // Stud. Hist. Philos. Sci. V. 88. P. 181–192. https://doi.org/10.1016/j.shpsa.2021.05.013
- Kaplan J.O., Bigelow N.H., Prentice I.C., Harrison S.P., Bartlein P.J., et al., 2003. Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections // J. Geophys. Res. V. 108. Art. 8171. https://doi.org/10.1029/2002JD002559
- Keith D.A., 2009. The interpretation, assessment and conservation of ecological communities and ecosystems // Ecol. Manag. Restor. V. 10. № S1. Р. S3–S15. https://doi.org/10.1111/j.1442-8903.2009.00453.x
- Keith D.A., 2015. Assessing and managing risks to ecosystem biodiversity // Austral. Ecol. V. 40. № 4. P. 337–346. https://doi.org/10.1111/aec.12249
- Keith D.A., Ferrer-Paris J.R., Nicholson E., Bishop M.J., Polidoro B.A., et al., 2022. A function-based typology for Earth’s ecosystems // Nature. V. 610. P. 513–518. https://doi.org/10.1038/s41586-022-05318-4
- Keith D.A., Orscheg C., Simpson C.C., Clarke P.J., Hughes L., et al., 2009. A new approach and case study for estimating extent and rates of habitat loss for ecological communities // Biol. Conserv. V. 142. № 7. P. 1469–1479. https://doi.org/10.1016/j.biocon.2009.02.015
- Keith D.A., Rodríguez J.P., Rodríguez-Clark K.M., Nicholson E., Aapala K., et al., 2013. Scientific foundations for an IUCN Red List of Ecosystems // PLoS One. V. 8. № 5. Art. e62111. https://doi.org/10.1371/journal.pone.0062111
- Kling M.M., Auer S.L., Comer P.J., Ackerly D.D., Hamilton H., 2020. Multiple axes of ecological vulnerability to climate change // Global Change Biol. V. 26. № 5. P. 2798–2813. https://doi.org/10.1111/gcb.15008
- Lindenmayer D., Hunter M., 2010. Some guiding concepts for conservation biology // Conserv. Biol. V. 24. № 6. P. 1459–1468. https://doi.org/10.1111/j.1523-1739.2010.01544.x
- Lindgaard A., Henriksen S., 2011. Norwegian Red List for Ecosystems and Habitat Types 2011. Trondheim: Norwegian Biodiversity Information Centre. 120 p.
- MacKenzie W.H., Meidinger D., 2017. The Biogeoclimatic Ecosystem Classification Approach: An ecological framework for vegetation classification // Phytocoenologia. V. 48. № 2. P. 1–11. https://doi.org/10.1127/phyto/2017/0160
- Marshall A., Schulte to Bühne H., Bland L., Pettorelli N., 2018. Assessing ecosystem collapse risk in ecosystems dominated by foundation species: The case of fringe mangroves // Ecol. Indic. V. 91. P. 128–137. https://doi.org/10.1016/j.ecolind.2018.03.076
- Moncrieff G.R., Bond J.W., Higgins S.I., 2016. Revising the biome concept for understanding and predicting global change impacts // J. Biogeogr. V. 43. P. 863–873. https://doi.org/10.1111/jbi.12701
- Mucina L., 2019. Biome: Evolution of a crucial ecological and biogeographical concept // New Phytol. V. 222. P. 97–114. https://doi.org/10.1111/nph.15609
- Mueller M., Geist J., 2016. Conceptual guidelines for the implementation of the ecosystem approach in biodiversity monitoring // Ecosphere. V. 7. № 5. Art. e01305. https://doi.org/10.1002/ecs2.1305
- Murray N., 2017. Global 10 x 10-km grids suitable for use in IUCN Red List of Ecosystems assessments (vector and raster format). https://doi.org/10.6084/m9.figshare.4653439.v1
- Murray N.J., Keith D.A., Bland L.M., Nicholson E., Regan T.J., et al., 2017. The use of range size to assess risks to biodiversity from stochastic threats // Divers. Distrib. V. 23. № 5. P. 474–483. https://doi.org/10.1111/ddi.12533
- Murray N.J., Keith D.A., Tizard R., Duncan A., Hlaing N., et al., 2020. Threatened Ecosystems of Myanmar. An IUCN Red List of Ecosystems Assessment. Version 1.0. Wildlife Conservation Society. https://doi.org/10.19121/2019.Report.37457
- Newton A.C., 2021a. Ecosystem Collapse and Recovery. Cambridge: Cambridge Univ. Press. 490 p.
- Newton A.C., 2021b. Strengthening the scientific basis of ecosystem collapse risk assessments // Land. V. 10. № 11. Art. 1252. https://doi.org/10.3390/land10111252
- Nicholson E., Andrade A., Brooks T.M., Driver A., Ferrer-Paris J.R., et al., 2024. Roles of the Red List of Ecosystems in the Kunming–Montreal Global Biodiversity Framework // Nat. Ecol. Evol. V. 8. P. 614–621. https://doi.org/s41559-023-02320-5
- Nicholson E., Watermeyer K.E., Rowland J.A., Sato C.F., Stevenson S.L., et al., 2021. Scientific foundations for an ecosystem goal, milestones and indicators for the post-2020 global biodiversity framework // Nat. Ecol. Evol. V. 5. № 10. P. 1338–1349. https://doi.org/10.1038/s41559-021-01538-5
- Olden J.D., Poff N.L., Douglas M.R., Douglas M.E., Fausch K.D., 2004. Ecological and evolutionary consequences of biotic homogenization // Trends Ecol. Evol. V. 19. № 1. P. 18–24. https://doi.org/10.1016/j.tree.2003.09.010
- Olson D.M., Dinerstein E., Wikramanayake E.D., Burgess N.D., Powell G.V.N., et al., 2001. Terrestrial ecoregions of the world: A new map of life on Earth // Bio-Science. V. 51. P. 933–938. https://doi.org/10.1641/0006-3568(2001)051[0933: TEOTWA]2.0.CO;2
- Ovaskainen O., Abrego N., 2020. Joint Species Distribution Modelling: With Applications in R. Cambridge: Cambridge Univ. Press. 372 p. https://doi.org/10.1017/9781108591720
- Paruelo J.M., Jobbagy E.G., Sala O.E., 2001. Current distribution of ecosystem functional types in temperate South America // Ecosystems. V. 4. P. 683–698. https://doi.org/10.1007/s10021-001-0037-9
- Perzanowska J., Korzeniak J., 2020. Red list of Natura 2000 habitat types of Poland // J. Nat. Conserv. V. 56. Art. 125834. https://doi.org/10.1016/j.jnc.2020.125834
- Pickett S.T.A., Cadenasso M.L., 2002. The ecosystem as a multidimensional concept: meaning, model, and metaphor // Ecosystems. V. 5. № 1. P. 1–10. https://doi.org/10.1007/s10021-001-0051-y
- Potapov P., Hansen M.C., Kommareddy I., Kommareddy A., Turubanova S., et al., 2020. Landsat analysis ready data for global land cover and land cover change mapping // Remote Sens. V. 12. № 3. Art. 426. https://doi.org/10.3390/rs12030426
- Rivas-Martinez S., Saenz S.R., Penas A., 2011. Worldwide bioclimatic classification system // Global Geobot. V. 1. P. 1–634. https://doi.org/10.5616/gg110001
- Rodríguez J.P., Keith D.A., Rodríguez-Clark K.M., Murray N.J., Nicholson E., et al., 2015. A practical guide to the application of the IUCN Red List of Ecosystems criteria // Phil. Trans. R. Soc. Lond. B. Biol. Sci. V. 370. № 1662. P. 1–9. https://doi.org/10.1098/rstb.2014.0003
- Rodríguez J.P., Rodríguez-Clark K.M., Keith D.A., Barrow E.G., Comer P., Oliveira-Miranda M.A., 2012. From Alaska to Patagonia: The IUCN Red List of the continental ecosystems of the Americas // Oryx. V. 46. № 2. P. 170–171. https://doi.org/10.1017/s0030605312000439
- Rodwell J.S., Evans D., Schaminée J.H.J., 2018. Phytosociological relationships in European Union policy-related habitat classifications // Rend. Lincei. Sci. Fis. Nat. V. 29. № 2. P. 237–249. https://doi.org/10.1007/s12210-018-0690-y
- Rowland J.A., Bland L.M., Keith D.A., Juffe‐Bignoli D., Burgman M.A., et al., 2020. Ecosystem indices to support global biodiversity conservation // Conserv. Lett. V. 13. № 1. Art. e12680. https://doi.org/10.1111/conl.12680
- Rutherford M.C., Mucina L., Powrie L.W., 2006. Biomes and bioregions of Southern Africa // Vegetation of South Africa, Lesotho and Swaziland / Eds Mucina L., Rutherford M.C. Pretoria: South African National Biodiversity Institute. P. 32–51.
- Shapiro A.C., Grantham H.S., Aguilar-Amuchastegui N., Murray N.J., Gond V., et al., 2021. Forest condition in the Congo Basin for the assessment of ecosystem conservation status // Ecol. Indic. V. 122. Art. 107268. https://doi.org/10.1016/j.ecolind.2020.107268
- Sievers M., Chowdhury M.R., Adame M.F., Bhadury P., Bhargava R., et al., 2020. Indian Sundarbans mangrove forest considered endangered under Red List of Ecosystems, but there is cause for optimism // Biol. Conserv. V. 251. Art. 108751. https://doi.org/10.1016/j.biocon.2020.108751
- Smith R.J., Jovan S., McCune B., 2020. Climatic niche limits and community‐level vulnerability of obligate symbioses // J. Biogeogr. V. 47. № 2. P. 382–395. https://doi.org/10.1111/jbi.13719
- Stadtmann S., Seddon P.J., 2020. Release site selection: Reintroductions and the habitat concept // Oryx. V. 54. № 5. P. 687–695. https://doi.org/10.1017/S0030605318001199
- Steffen W., Grinevald J., Crutzen P., McNeill J., 2011. The Anthropocene: conceptual and historical perspectives // Proc. R. Soc. A: Math. Phys. Eng. Sci. V. 369. № 1938. P. 842–867. https://doi.org/10.1098/rsta.2010.0327
- Stephens T., 2023. The Kunming–Montreal Global Biodiversity Framework // Int. Legal Mater. V. 62. № 5. P. 868–887. https://doi.org/10.1017/ilm.2023.16
- Tansley A.G., 1935. The use and abuse of vegetational concepts and terms // Ecology. V. 16. № 3. P. 284–307. https://doi.org/10.2307/1930070
- Terborgh J., Feeley K., 2008. Ecosystem decay in closed forest fragments // Tropical Forest Community Ecology / Eds Carson W.P., Schnitzer S.A. Oxford: Blackwell Publishing. P. 308–321.
- Tierney D.A., 2022. Linking restoration to the IUCN red list for ecosystems: A case study of how we might track the Earth’s ecosystems // Austral. Ecol. V. 47. № 4. P. 852–866. https://doi.org/10.1111/aec.13168
- Tikhonov G., Opedal Ø.H., Abrego N., Lehikoinen A., Jonge M.M., de, et al., 2020. Joint species distribution modelling with the R-package Hmsc // Methods Ecol. Evol. V. 11. № 3. P. 442–447. https://doi.org/10.1111/2041-210X.13345
- Tozer M.G., Leishman M.R., Auld T.D., 2015. Ecosystem risk assessment for Cumberland Plain Woodland, New South Wales, Australia // Austral. Ecol. V. 40. № 4. P. 400–410. https://doi.org/10.1111/aec.12201
- Tucker G.M., Quétier F., Wende W., 2020. Guidance on Achieving No Net Loss or Net Gain of Biodiversity and Ecosystem Services. Report to the European Commission, DG Environment on Contract ENV.B.2/SER/2016/0018. Brussels: Institute for European Environmental Policy. 101 p.
- Venter O., Sanderson E.W., Magrach A., Allan J.R., Beher J., et al., 2016. Sixteen years of change in the glo-bal terrestrial human footprint and implications for biodiversity conservation // Nat. Commun. V. 7. № 1. Art. 12558.
- Walter H., Box E., 1976. Global classification of natural terrestrial ecosystems // Vegetatio. V. 32. P. 75–81.
- Walter H., Breckle S.W., 1991. Okologishe Grundlagen in Global Sicht. Stuttgart: Gustav Fischer Verlag. 586 p.
- Wang S., Loreau M., Mazancourt C., de, Isbell F., Beierkuhnlein C., et al., 2021. Biotic homogenization destabilizes ecosystem functioning by decreasing spatial asynchrony // Ecology. V. 102. № 6. Art. e03332. https://doi.org/10.1002/ecy.3332
- Yapp R.H., 1922. The concept of habitat // J. Ecol. V. 10. № 1. P. 1–17.
Supplementary files
