Modeling of the modern climatic range of Cydalima perspectalis (Lepidoptera, Crambidae) in Eurasia
- Authors: Popov I.O.1,2, Popova E.N.2
-
Affiliations:
- Izrael Institute of Global Climate and Ecology
- Institute of Geography, RAS
- Issue: Vol 85, No 4 (2024)
- Pages: 313-331
- Section: Articles
- URL: https://journals.rcsi.science/0044-4596/article/view/269760
- DOI: https://doi.org/10.31857/S0044459624040044
- EDN: https://elibrary.ru/UTNJYP
- ID: 269760
Cite item
Abstract
Modeling of the modern climatic range of a dangerous plant pest of the genus Buxus L. box tree moth Cydalima perspectalis (Walker, 1859) is carried out in order to determine possible territories of its further expansion in Eurasia. Information on the loci of actual C. perspectalis detection both in native (East and South Asia) and invasive (Europe and West Asia) parts of the range was collected from various sources (species distribution databases and publications). Six bioclimatic (three temperature and three humidity) parameters are used as distribution predictors. Original methods for determining the number of pseudo-absence points and their selective generation are developed and applied. The final classification and partitioning of the space of bioclimatic factors is carried out using gradient boosting. The modern Eurasian climatic range of the box tree moth is calculated and mapped. It is shown that the invasion has not yet reached its limits and there are a number of territories in Eurasia where climatic conditions are favorable for the emergence of C. perspectalis populations both in the native part of the range (certain southern and eastern regions of China, the DPRK, the southern foothills of the Himalayas) and in its invasive part (Northern and Eastern Europe, Caucasus, and Turkey). A comparative assessment of the importance of different climatic factors in determining the box tree moth distribution area is given. It has been found out that the sum of the driest month precipitation is of greatest importance for constructing a model of the C. perspectalis climatic range (47.6%). A significant difference in climatic conditions between the native and invasive parts of the range is revealed and assumptions about the possible causes of its occurrence are made.
Full Text

About the authors
I. O. Popov
Izrael Institute of Global Climate and Ecology; Institute of Geography, RAS
Author for correspondence.
Email: igor_o_popov@mail.ru
Russian Federation, 107258, Moscow, Glebovskaya str., 20B; 119017, Moscow, Staromonetny Lane, 29/4
E. N. Popova
Institute of Geography, RAS
Email: en_popova@mail.ru
Russian Federation, 119017, Moscow, Staromonetny Lane, 29/4
References
- Бардин М.Ю., Платова Т.В., 2020. Изменения сезонных показателей экстремумов температуры воздуха в Москве и центральных областях европейской части России // Метеорология и гидрология. № 7. С. 20–35.
- Богданович А.Ю., Добролюбов Н.Ю., Крыленко С.В., Баранчиков Ю.Н., Липка О.Н., Семенов С.М., 2023. Климатический ареал непарного шелкопряда на территории России, соответствующий климатам конца ХХ века и ХХI века // Фунд. и прикл. климатология. Т. 9. № 1. С. 65–88. https://doi.org/10.21513/2410-8758-2023-1-65-106
- Будашкин Ю.И., 2016. Самшитовая огневка – Cydalima perspectalis (Lepidoptera, Pyraustidae) – новый для фауны Украины и Крыма вид опасного вредителя лесного и паркового хозяйства // Экосистемы. Вып. 5. С. 36–39.
- Гниненко Ю.И., Пономарев В.Л., Нестеренкова А.Э., Сергеева Ю.А., Ширяева Н.В., Лянгузов М.Е., 2018. Самшитовая огневка Neoglyphodes perspectalis Walker – новый опасный вредитель самшита на юге европейской части России. Пушкино: ВНИИЛМ. 36 с.
- Гниненко Ю.И., Сергеева Ю.А., Ширяева Н.В., Лянгузов М.Е., 2016. Самшитовая огневка – опасный инвазивный вредитель самшита // Лесохоз. информ.: электрон. сетевой журн. № 3. С. 25–35.
- Гниненко Ю.И., Ширяева Н.В., Щуров В.И., 2014. Самшитовая огневка – новый инвазивный организм в лесах российского Кавказа // Карантин растений. № 1 (7). С. 32–36.
- Доброносов В.В., 2017. Новые данные о самшитовой огневке Cydalima perspectalis (Walker, 1859) на Центральном Кавказе. https://aeconomy.ru/news/agro/novye-dannye-o-samshitovoy-ognevke.html
- Ескин Н.Б., Бибин А.Р., 2014. Очаг самшитовой огневки в тисо-самшитовой роще // Кавказ заповедный. № 8 (124). С. 7.
- Карпун Н.Н., Понаморев В.Л., Нестеренкова А.Э., Захарченко В.Е., 2019. Инвазия и биология самшитовой огневки Cydalima perspectalis Walker (Lepidoptera, Crambidae) на Черноморском побережье России // Фитосанитария. Карантин растений. Т. 29. № 3. С. 50–59.
- Лукмазова Е.А., 2014. Распространение опасных вредителей для самшитовых насаждений на территории Республики Абхазия // VIII Чтения памяти О.А. Катаева. Вредители и болезни древесных растений России: Мат-лы междунар. конф., Санкт-Петербург, 18–20 ноября 2014 г. / Под ред. Мусолина Д.Л., Селиховкина А.В. СПб.: СПбГЛТУ. С. 45.
- Марченко А.Б., 2022. Екологічні аспекти прояву інвазійного виду Суdalima perspectalis (Walker, 1859) в урбанізованих екосистемах // Агробіологія. № 2. С. 153–160. https://doi.org/10.33245/2310-9270-2022-174-2-153-160
- Нестеренкова А.Э., Пономарев В.Л., Карпун Н.Н., 2017. Особенности развития самшитовой огневки в лабораторной культуре // Лесной вестник. Т. 21. № 3. С. 61–69. https://doi.org/10.18698/2542-1468-2017-3-61-69
- Определитель насекомых Дальнего Востока России, 2005. Т. V. Ручейники и чешуекрылые. Ч. 5 / Под ред. Лера П.А. Владивосток: Дальнаука. 575 с.
- Попова Е.Н., Попов И.О., 2013. Климатические факторы, определяющие границы ареалов вредителей и возбудителей болезней сельскохозяйственных растений, и расчетные методы оценки изменения ареалов при изменении климата // Проблемы экологического мониторинга и моделирования экосистем. Т. XXV. М.: ИГКЭ. С. 177–206.
- Попова Е.Н., Попов И.О., 2019. Моделирование потенциальных климатических ареалов биологических видов и их климатогенных изменений // Фунд. и прикл. климатология. Т. 1. С. 58–75. https://doi.org/10.21513/2410-8758-2019-1-58-75
- Попова Е.Н., Попов И.О., 2023. Локусы обнаружения самшитовой огневки Cydalima perspectalis в мире в 1986–2020 гг. Свидетельство о государственной регистрации базы данных № 2023620218 Российская Федерация. Заявка № 2023620033: заявл. 10.01.2023: опубл. 16.01.2023 / Заявитель: ФГБУН Институт географии РАН. https://elibrary.ru/item.asp?id=50131740
- Проклов В.В., Караева С.З., 2013. Новые и интересные находки чешуекрылых (Lepidoptera) в Чеченской Республике (Россия) // Кавказский энтомол. бюлл. Т. 9. № 2. С. 281–282.
- Рашка С., Мирджалили В., 2020. Python и машинное обучение. Машинное и глубокое обучение с использованием Python, scikit-learn и TensorFlow 2. М.; СПб.: Диалектика. 846 с.
- Скворцов А.В., 2002. Триангуляция Делоне и ее применение. Томск: Изд-во Томского ун-та. 128 с.
- Стрюкова Н.М., 2016. Аборигенные и инвазивные членистоногие и их естественные враги в парках Республики Крым // Сборник научных трудов Государственного Никитского ботанического сада. Т. 142. Ялта: ГНБС. С. 186–193.
- Трикоз Н.Н., Халилова З.Э., 2016. Самшитовая огневка в Никитском Ботаническом саду // Сборник научных трудов Государственного Никитского ботанического сада. Т. 142. Ялта: ГНБС. С. 69–75.
- Флах П., 2016. Машинное обучение. Наука и искусство построения алгоритмов, которые извлекают знания из данных. М.: Изд-во ДМК. 399 с.
- Хейдт М., Груздев А., 2019. Изучаем Pandas. М.: Изд-во ДМК. 679 с.
- Щуров В.И., 2014. Самшитовая огневка Cydalima perspectalis (Walker, 1859) на российском Кавказе – хроника трех лет инвазии // VIII Чтения памяти О.А. Катаева. Вредители и болезни древесных растений России: Мат-лы междунар. конф., Санкт-Петербург, 18–20 ноября 2014 г. / Под ред. Мусолина Д.Л., Селиховкина А.В. СПб.: СПбГЛТУ. С. 99–100.
- Araújo M.B., Anderson R.P., Barbosa M.A., Beale C.M., Dormann C.F., et al., 2019. Standards for distribution models in biodiversity assessments // Sci. Adv. V. 5. Art. eaat4858. https://doi.org/10.1126/sciadv.aat4858
- Atlas of Woody Plants in China. Distribution and Climate, 2011 / Eds Fang J., Wang Z., Tang Z. Berlin, Heidelberg: Springer. 2000 р. https://doi.org/10.1007/978-3-642-15017-3
- Barandela R., Sánchez J.S., Garca V., Rangel E., 2003. Strategies for learning in class imbalance problems // Pattern Recognit. V. 36. № 3. P. 849–851. https://doi.org/10.1016/S0031-3203(02)00257-1
- Barbet-Massin M., Jiguet F., Albert C.H., Thuiller W., 2012. Selecting pseudo-absences for species distribution models: How, where and how many? // Methods Ecol. Evol. V. 2. № 3. P. 327–338. https://doi.org/10.1111/j.2041-210X.2011.00172.x
- Bellard C., Thuiller W., Leroy B., Genovesi P., Bakkenes M., Courchamp F., 2013. Will climate change promote future invasions? // Global Change Biol. V. 12. № 19. P. 3740–3748. https://doi.org/10.1111/gcb.12344
- Bereś P.K., Ziętara P., Nakonieczny M., Kontowski Ł., Grzbiela M., Augustyniak M., 2022. Cydalima perspectalis in Poland – 8 years of invasion against the background of three other invasive species // Diversity. V. 22. № 14. P. 1–20. https://doi.org/10.3390/d14010022
- Billen W., 2007. Diaphania perspectalis (Lepidoptera: Pyralidae) – a new moth in Europe // Mitt. Entomol. Ges. Basel. V. 57. P. 135–137.
- Booth T.H., Nix H.A., Busby J.R., Hutchinson M.F., 2014. BIOCLIM: The first species distribution modelling package, its early applications and relevance to most current MAXENT studies // Divers. Distrib. V. 20. № 1. P. 1–9. https://doi.org/10.1111/ddi.12144
- Bras A., Avtzis D.N., Kenis M., Li H., Vétek G., et al., 2019. A complex invasion story underlies the fast spread of the invasive box tree moth (Cydalima perspectalis) across Europe // J. Pest Sci. № 92. P. 1187–1202. https://doi.org/10.1007/s10340-019-01111-x
- Brown J.L., Carnaval A.C., 2019. A tale of two niches: Methods, concepts, and evolution // Front. Biogeogr. V. 11. № 4. Art. e44158. https://doi.org/10.21425/F5FBG44158
- Canelles Q., Bassols E., Vayreda J., Brotons L., 2021. Predicting the potential distribution and forest impact of the invasive species Cydalima perspectalis in Europe // Ecol. Evol. V. 10. № 11. P. 5713–5727. https://doi.org/10.1002/ece3.7476
- Carpenter G., Gillison A.N., Winter J., 1993. DOMAIN: A flexible modelling procedure for mapping potential distributions of plants and animals // Biodivers. Conserv. V. 2. P. 667–680. https://doi.org/10.1007/BF00051966
- Chawla N.V., Bowyer K.W., Hall L.O., Kegelmeyer P.W., 2002. SMOTE: Synthetic minority over-sampling technique // J. Artif. Intell. Res. V. 16. P. 321–357. https://doi.org/10.1613/jair.953
- Chen T., Guestrin C., 2016. XGBoost: a scalable tree boosting system // Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. N.-Y.: Association for Computing Machinery. P. 785–794. https://doi.org/10.1145/2939672.2939785
- Di Domenico F., Lucchese F., Magri D., 2011. Late glacial and Holocene history of Buxus sempervirens L. in Italy // Annali di Botanica. V. 1. P. 45–58.
- Di Domenico F., Lucchese F., Magri D., 2012. Buxus in Europe: Late Quaternary dynamics and modern vulnerability // Perspect. Plant Ecol. Evol. Syst. V. 14. P. 354–362. https://doi.org/10.1016/j.ppees.2012.07.001
- Drake J.M., Bossenbroek J.M., 2004. The potential distribution of zebra mussels in the United States // Bioscience. V. 10. № 54. P. 931–941. https://doi.org/10.1641/0006-3568(2004)054[0931: TPDOZM]2.0.CO;2
- Eckert S., Hamad A., Kilawe C.J., Linders T.E.W., et al., 2020. Niche change analysis as a tool to inform management of two invasive species in Eastern Africa // Ecosphere. V. 11. № 2. Art. e02987. https://doi.org/10.1002/ecs2.2987
- Esmaeilnezhad K., Mehrjerdi M., Ghorbanzadeh M., 2020. Genetic diversity and structure of Buxus hyrcana (Pojark) populations in the Caspian forests of northern Iran revealed by ISSR markers // Biologia. V. 75. № 2. P. 917–926. https://doi.org/10.2478/s11756-020-00445-7
- Feldtrauer J.F., Feldtrauer J.J., Brua C., 2009. Premiers signalements en France de la Pyrale du Buis Diaphania perspectalis (Walker, 1859), espèce exotique envahissante s’ attaquant aux Buis (Lepidoptera, Crambidae) // Bull. Soc. Entomol. Mulhouse. V. 65. P. 55–58.
- Feng L., Zhou L., Zhang T., Wang X., 2023. Niche dynamics below the species level: Evidence from evaluating niche shifts within Quercus aquifolioides // Forests. V. 690. № 14. P. 1–14. https://doi.org/10.3390/f14040690
- Fick S., Hijmans R., 2017. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas // Int. J. Climatol. V. 37. № 12. P. 4302–4315. https://doi.org/10.1002/joc.5086
- Franklin J., 2009. Mapping Species Distributions. Spatial Inference and Prediction. Cambridge: Cambridge Univ. Press. 320 p.
- Gaston K.J., 2003. The Structure and Dynamics of Geographic Ranges. Oxford: Oxford Univ. Press. 266 p.
- GBIF.org, 2020. (4 August 2020) GBIF Occurrence Download. https://doi.org/10.15468/dl.prq93v
- Graham C., 2005. Niche conservatism: Integrating evolution, ecology, and conservation biology // Annu. Rev. Ecol. Evol. Syst. V. 36. P. 519–539. https://doi.org/10.1146/annurev.ecolsys.36.102803.095431
- Guo Q., Kelly M., Graham C.H., 2005. Support vector machines for predicting distribution of Sudden Oak Death in California // Ecol. Model. V. 182. № 1. P. 75–90. https://doi.org/10.1016/j.ecolmodel.2004.07.012
- Hampson G.F., 1896. The Fauna of British India, Including Ceylon and Burma. Moths. V. III. L.: Taylor & Francis. 546 p.
- Hanberry B., He H., Palik B., 2012. Pseudoabsence generation strategies for species distribution models // PloS One. V. 7. № 8. Art. e44486. https://doi.org/10.1371/journal.pone.0044486
- Harris I., Osborn T.J., Jones P., Lister D., 2020. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset // Sci. Data. V. 7. Art. 109. https://doi.org/10.1038/s41597-020-0453-3
- Hughes L., Cawsey E.M., Westoby M., 1996. Geographic and climatic range sizes of Australian eucalypts and a test of Rapoport’s rule // Global Ecol. Biogeogr. Lett. V. 5. № 3. P. 128–142. https://doi.org/10.2307/2997395
- Inoue H., Sugi S., Kuroko H., Moriuti S., Kawabe A., Owada M., 1982. Pyralidae. Moths of Japan. Tokyo: Kodansha. 1519 p.
- Kenis M., Nacambo S., Leuthardt F.L.G., Di Domenico F., Haye T., 2013. The box tree moth, Cydalima perspectalis, in Europe: Horticultural pest or environmental disaster? // Aliens. V. 33. P. 38–41.
- Krüger E.O., 2008. Glyphodes perspectalis (Walker, 1859) – neu für die Fauna Europas (Lepidoptera: Crambidae) // Entomol. Zeitschrift. V. 118. № 2. P. 81–83.
- Laz B., Ok T., Kocaçınar F., 2022. İstilaci Şimşir Güvesi (Cydalima perspectalis (Walker) (Lepidoptera: Crambidae, Spilomelinae)’Nin Türkiye’nin Doğu Akdeniz Bölgesinde Uzun Yaprakli Şimşir (Buxus balearica) Türü Üzerindeki Zararina İlişkin İlk Tespitler // ArtGRID. V. 4. № 2. P. 151–159. https://doi.org/10.57165/artgrid.1178575
- Lemaître G., Nogueira F., Aridas C.K., 2017. Imbalanced-learn: A Python toolbox to tackle the curse of imbalanced datasets in machine learning // J. Mach. Learn. Res. V. 18. № 17. P. 1–5.
- Liu F.T., Ting K.M., Zhou Z.-H., 2008. Isolation forest // 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy. Los Alamitos: IEEE. P. 413–422. https://doi.org/10.1109/ICDM.2008.17
- Liu X.-Y., Wu J., Zhou Z.-H., 2009. Exploratory undersampling for class-imbalance learning // IEEE Trans. Syst. Man. Cybern. B. Cybern. V. 39. № 2. P. 539–550. https://doi.org/10.1109/TSMCB.2008.2007853
- Lokoshchenko M.A., 2014. Urban ‘heat island’ in Moscow // Urban Climate. V. 10. Pt 3. P. 550–562. https://doi.org/10.1016/j.uclim.2014.01.008
- Mack B., Roscher R., Waske B., 2014. Can I trust my one-class classification? // Remote Sensing. V. 6. № 9. P. 8779–8802. https://doi.org/10.3390/rs6098779
- Mally R., Nuss M., 2010. Phylogeny and nomenclature of the box tree moth, Cydalima perspectalis (Walker, 1859) comb. n., which was recently introduced into Europe (Lepidoptera: Pyraloidea: Crambidae: Spilomelinae) // Eur. J. Entomol. V. 107. № 3. P. 393–400. https://doi.org/10.14411/eje.2010.048
- Maruyama T., Shinkaji N., 1991. The life cycle of the box-tree pyralid, Glyphodes perspectalis (Walker) (Lepidoptera: Pyralidae) // Japanese J. Appl. Entomol. Zool. V. 35. № 3. P. 221–230. https://doi.org/10.1303/jjaez.35.221
- Mason L., Baxter J., Bartlett P.L., Frean M., 1999. Boosting algorithms as gradient descent // Advances in Neural Information Processing Systems. V. 12 / Eds Solla S., Leen T., Müller K. Cambridge: MIT Press. P. 512–518.
- Mateo R., Croat T., Felicisimo A., Muñoz J., 2010. Profile or group discriminative techniques? Generating reliable species distribution models using pseudo-absences and target-group absences from natural history collections // Divers. Distrib. V. 16. № 1. P. 84–94. https://doi.org/10.1111/j.1472-4642.2009.00617.x
- Matsiakh I., Kramarets V., Mamadashvili G., 2018. Box tree moth Cydalima perspectalis as a threat to the native populations of Buxus colchica in Republic of Georgia // J. Entomol. Res. Soc. V. 20. № 2. P. 29–42.
- Min T., Brückner P., 2008. Buxaceae // Flora of China. V. 11. Beijing: Science Press & St. Louis: Missouri Botanical Garden Press. P. 321–332.
- Mitchell R., Chitanava S., Dbar R., Kramarets V., Lehtijärvi A., et al., 2018. Identifying the ecological and societal consequences of a decline in Buxus forests in Europe and the Caucasus // Biol. Invasions. V. 20. P. 3605–3620. https://doi.org/10.1007/s10530-018-1799-8
- Muus T.S.T., Haaften E.-J., van, Deventer L.J., van, 2009. De buxusmot Palpita perspectalis (Walker) in Nederland (Lepidoptera: Crambidae) // Entomol. Berichten. V. 69. P. 66–67.
- Nacambo S., Leuthardt F.L., Wan H., Li H., Haye T., et al., 2014. Development characteristics of the box tree moth Cydalima perspectalis and its potential distribution in Europe // J. Appl. Entomol. V. 138. № 1–2. P. 14–26. https://doi.org/10.1111/jen.12078
- Noumir Z., Honeine P., Richard C., 2012. On simple one-class classification methods // IEEE International Symposium on Information Theory Proceedings. Cambridge: IEEE. P. 2022–2026. https://doi.org/10.1109/ISIT.2012.6283685
- Peterson A., 1999. Conservatism of ecological niches in evolutionary time // Science. V. 285. № 5431. P. 1265–1267. https://doi.org/10.1126/science.285.5431.1265
- Peterson A., 2011. Ecological niche conservatism: A time-structured review of evidence // J. Biogeogr. V. 38. № 5. P. 817–827. https://doi.org/10.1111/j.1365-2699.2010.02456.x
- Peterson A.T., 2014. Mapping Disease Transmission Risk. Enriching Models Using Biogeography and Ecology. Baltimore: John Hopkins Univ. Press. 210 p. https://doi.org/10.3201/eid2108.150665
- Peterson A.T., Soberón J., Pearson R.G., Anderson R.P., Martínez-Meyer E., et al., 2011. Ecological Niches and Geographic Distributions. Princeton; Oxford: Princeton Univ. Press. 314 p. https://doi.org/10.1515/9781400840670
- Petrosyan V., Osipov F., Feniova I., Dergunova N., Warshavsky A., et al., 2023. The TOP-100 most dangerous invasive alien species in Northern Eurasia: Invasion trends and species distribution modelling // NeoBiota. V. 82. P. 23–56. https://doi.org/10.3897/neobiota.82.96282
- Phillips S.J., Anderson R.P., Schapire R.E., 2006. Maximum entropy modeling of species geographic distributions // Ecol. Model. V. 190. № 3–4. P. 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
- Phillips S., Dudík M., Schapire R.E., 2004. A maximum entropy approach to species distribution modeling // ICML ‘04: Proceedings of the Twenty-First International Conference on Machine Learning. N.-Y.: Association for Computing Machinery. P. 83. https://doi.org/10.1145/1015330.1015412
- PictureThis, 2023. Online Plant Encyclopedia and Common Popular Plants. https://www.picturethisai.com/wiki
- Radosavljevic A., Anderson R.P., 2014. Making better Maxent models of species distributions: complexity, overfitting and evaluation // J. Biogeogr. V. 41. P. 629–643. https://doi.org/10.1111/jbi.12227
- Senay S.D., Worner S.P., Ikeda T., 2013. Novel three-step pseudo-absence selection technique for improved species distribution modelling // PloS One. V. 8. № 8. Art. e71218. https://doi.org/10.1371/journal.pone.0071218
- Sillero N., Arenas-Castro S., Enriquez-Urzelai U., Vale C.G., Sousa-Guedes D., et al., 2021. Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling // Ecol. Model. V. 456. № 15. Art. 109671. https://doi.org/10.1016/j.ecolmodel.2021.109671
- Slamka F., 2022. Pyraloidea (Lepidoptera) of Central Europe: Identification, Distribution, Habitat, Biology. Iver: Pemberley Natural History Books BA, ABA. 176 p.
- Soberón J., 2007. Grinnellian and Eltonian niches and geographic distributions of species // Ecol. Lett. V. 10. № 12. P. 1115–1123. https://doi.org/10.1111/j.1461-0248.2007.01107.x
- Srivastava V., Lafond V., Griess V.C., 2019. Species distribution models (SDM): Applications, benefits and challenges in invasive species management // CABI Rev. V. 14. № 20. P. 1–13. https://doi.org/10.1079/PAVSNNR201914020
- Stoica A., 2018. An interpretation of multi-model future climate predictions for BIOCLIM variables in Romania // Contribuţii Botanice. V. 53. P. 89–109.
- Wan H., Haye T., Kenis M., Nacambo S., Xu H., et al., 2014. Biology and natural enemies of Cydalima perspectalis in Asia: Is there biological control potential in Europe? // J. Appl. Entomol. V. 138. № 10. P. 715–722. https://doi.org/10.1111/jen.12132
- Wang S., Liu Q., Zhu E., Porikli F., Yin J., 2018. Hyperparameter selection of one-class support vector machine by self-adaptive data shifting // Pattern Recognit. V. 74. P. 198–211. https://doi.org/10.1016/j.patcog.2017.09.012
- Wang X., Jiang Y., Wu W., He X., Wang Z. et al., 2023a. Cryptosporidiosis threat under climate change in China: Prediction and validation of habitat suitability and outbreak risk for human-derived Cryptosporidium based on ecological niche models // Infect. Dis. Poverty. V. 12. № 35. P. 1–15. https://doi.org/10.1186/s40249-023-01085-0
- Wang X., Xu Q., Liu J., 2023b. Determining representative pseudo-absences for invasive plant distribution modeling based on geographic similarity // Front. Ecol. Evol. V. 11. Art. 1193602. https://doi.org/10.3389/fevo.2023.1193602
- Warren D.L., Glor R.E., Turelli M., 2008. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution // Evolution. V. 62. № 11. P. 2868–2883. https://doi.org/10.1111/j.1558-5646.2008.00482.x
- Wisz M.S., Guisan A., 2009. Do pseudo-absence selection strategies influence species distribution models and their predictions? An information-theoretic approach based on simulated data // BMC Ecol. V. 9. Art. 8. https://doi.org/10.1186/1472-6785-9-8
- Xie C., Chen L., Li M., Liu D., Jim C.Y., 2023. Spatial–temporal distribution pattern of Ormosia hosiei in Sichuan under different climate scenarios // Forests. V. 14. № 6. Art. 1261. https://doi.org/10.3390/f14061261
- Zhang H., Zheng S., Huang T., Liu J., Yue J., 2023. Estimation of potential suitable habitats for the relict plant Euptelea pleiosperma in China via comparison of three niche models // Sustainability. V. 15. № 14. Art. 11035. https://doi.org/10.3390/su151411035
- Zhang J.P., Mani I., 2003. KNN approach to unbalanced data distributions: A case study involving information extraction // Proc. Int. Conf. on Machine Learning (ICML 2003). Workshop on Learning from Imbalanced Data Sets. Washington: ICML. P. 1–7.
- Zurell D., Franklin J., König C., Bouchet P.J., Dormann C.F., et al., 2020. A standard protocol for reporting species distribution models // Ecography. V. 43. № 9. P. 1261–1277. https://doi.org/10.1111/ecog.04960
Supplementary files
