The role of micronuclei in chromatin elimination
- Authors: Akhmadullina Y.R.1,2, Khomenko P.O.1
-
Affiliations:
- Urals Research Center for Radiation Medicine, Federal Medical Biological Agency
- Chelyabinsk State University
- Issue: Vol 85, No 4 (2024)
- Pages: 284-298
- Section: Articles
- URL: https://journals.rcsi.science/0044-4596/article/view/269758
- DOI: https://doi.org/10.31857/S0044459624040026
- EDN: https://elibrary.ru/UTXEZI
- ID: 269758
Cite item
Abstract
Micronuclei are the extra-nuclear chromatin compartments separated from the primary nucleus and surrounded by their own nuclear envelope. For a long time it has been thought that micronuclei is the final stage of the pathological process in a cell. They have been used as biomarkers of the influence of genotoxic factors as well as of genome instability in various diseases. Nowadays, it is demonstrated that micronuclei could be involved in the cellular activities, affect the nuclear genome and lead to the changes in cell and tissue physiology. It is known that the formation of micronuclei is one of the steps in selective chromatin elimination in the ontogenesis of plant and animal species. The regions to be marked and eliminated from cell nucleus are recognized at the level of genome. This process is often accompanied by modifications with the heterochromatin formation, changes in the chromosome condensation and in the position of chromosomes in the nucleus. The processes observed in selective and non-selective chromatin elimination are similar to a great extent. The fact that the role of micronuclei in the cell functioning is not well-known yet, and the composition of the micronuclei and the ways of chromatin elimination could influence their role in the development of the pathogenesis, emphasizes the importance of additional studies for a more profound investigation of this phenomenon.
Full Text

About the authors
Yu. R. Akhmadullina
Urals Research Center for Radiation Medicine, Federal Medical Biological Agency; Chelyabinsk State University
Author for correspondence.
Email: akhmadullina.yul@yandex.ru
Russian Federation, 454141, Chelyabinsk, Vorovskogo st., 68A; 454001, Chelyabinsk, Brothers Kashirinykh st., 129
P. O. Khomenko
Urals Research Center for Radiation Medicine, Federal Medical Biological Agency
Email: akhmadullina.yul@yandex.ru
Russian Federation, 454141, Chelyabinsk, Vorovskogo st., 68A
References
- Ахмадуллина Ю.Р., 2022. Состав микроядер в Т-лимфоцитах у женщин, подвергшихся хроническому радиационному воздействию // Радиационная биология. Радиоэкология. Т. 62. № 6. С. 591–601. https://doi.org/10.31857/S0869803122060030
- Боголюбова И.О., Боголюбов Д.С., 2023. Функциональные взаимодействия BAF и LEM-белков в процессах формирования половых клеток // Цитология. Т. 65. № 5. С. 407–419. https://doi.org/10.31857/S0041377123050036
- Кисурина-Евгеньева О.П., Брянцева С.А., Штиль А.А., Онищенко Г.Е., 2006. Антитубулиновые агенты могут инициировать различные пути апоптоза // Биофизика. Т. 51. № 5. С. 875–880.
- Кисурина-Евгеньева О.П., Сутягина О.И., Онищенко Г.Е., 2016. Биогенез микроядер // Биохимия. T. 81. C. 453–464. https://doi.org/10.1134/S0006297916050035
- Ablasser A., Chen Z.J., 2019. cGAS in action: Expanding roles in immunity and inflammation // Science. V. 363. № 6431. Art. eaat8657. https://doi.org/10.1126/science.aat8657
- Almacellas E., Pelletier J., Day C., et al., 2021. Lysosomal degradation ensures accurate chromosomal segregation to prevent chromosomal instability // Autophagy. V. 17. № 3. P. 796–813. https://doi.org/10.1080/15548627.2020.1764727
- Arsoy N.S., Neuss S., Wessendorf S., et al., 2009. Micronuclei in peripheral blood from patients after cytostatic therapy mainly arise ex vivo from persistent damage // Mutagenesis. V. 24. № 4. P. 351–357. https://doi.org/10.1093/mutage/gep015
- Bailey L.J., Bianchi J., Doherty A.J., 2019. PrimPol is required for the maintenance of efficient nuclear and mitochondrial DNA replication in human cells // Nucleic Acids Res. V. 47. № 8. P. 4026–4038. https://doi.org/10.1093/nar/gkz056
- Balajee A., Bertucci A., Taveras M., Brenner D., 2014. Multicolour FISH analysis of ionising radiation induced micronucleus formation in human lymphocytes // Mutagenesis. V. 29. P. 447–455. https://doi.org/10.1093/mutage/geu041
- Balajee A.S., Sanders J.T., Golloshi R., et al., 2018. Investigation of spatial organization of chromosome territories in chromosome exchange aberrations after ionizing radiation exposure // Health Phys. V. 115. P. 77–89. https://doi.org/10.1097/HP.0000000000000840
- Bao H., Cao J., et al. (Aging Biomarker Consortium), 2023. Biomarkers of aging // Sci. China Life Sci. V. 66. P. 893–1066. https://doi.org/10.1007/s11427-023-2305-0
- Barbu L., Obreja D., Duliu O., 2019. The cell micronuclei response to ionizing radiation in the case of gamma and x-ray exposure // Romanian J. Physics. V. 64. Art. 702.
- Barquinero J.F., Knehr S., Braselmann H., et al., 1998. DNA-proportional distribution of radiation-induced chromosome aberrations analyzed by fluorescence in situ hybridization painting of all chromosomes of a human female karyotype // Int. J. Radiat. Biol. V. 74. № 3. P. 315–323. https://doi.org/10.1080/095530098141456
- Bartsch K., Knittler K., Borowski C., et al., 2017. Absence of RNase H2 triggers generation of immunogenic micronuclei removed by autophagy // Hum. Mol. Genet. V. 26. № 20. P. 3960–3972. https://doi.org/10.1093/hmg/ddx283
- Bonacci T., Emanuele M.J., 2019. Impressionist portraits of mitotic exit: APC/C, K11-linked ubiquitin chains and Cezanne // Cell Cycle. V. 18. № 6–7. P. 652–660. https://doi.org/10.1080/15384101.2019.1593646
- Bull C.F., Mayrhofer G., Zeegers D., et al., 2012. Folate deficiency is associated with the formation of complex nuclear anomalies in the cytokinesis-block micronucleus cytome assay // Environ. Mol. Mutagen. V. 53. № 4. P. 311–323. https://doi.org/10.1002/em.21688
- Chang L., Li M., Shao S., et al., 2022. Nuclear peripheral chromatin-lamin B1 interaction is required for global integrity of chromatin architecture and dynamics in human cells // Protein Cell. V. 13. P. 258–280. https://doi.org/10.1007/s13238-020-00794-8
- Chen Q., Sun L., Chen Z.J., 2016. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing // Nat. Immunol. V. 17. № 10. P. 1142–1149. https://doi.org/10.1038/ni.3558
- Cho Y.H., Jang Y., Woo H.D., et al., 2019. LINE-1 hypomethylation is associated with radiation-induced genomic instability in industrial radiographers // Environ. Mol. Mutagen. V. 60. № 2. P. 174–184. https://doi.org/10.1002/em.22237
- Cho Y.H., Kim S.Y., Woo H.D., et al., 2015a. Delayed numerical chromosome aberrations in human fibroblasts by low dose of radiation // Int. J. Environ. Res. Public Health. V. 12. P. 15162–15172. https://doi.org/10.3390/ijerph121214979
- Cho Y.H., Woo H.D., Jang Y., et al., 2015b. The association of LINE-1 hypomethylation with age and centromere positive micronuclei in human lymphocytes // PLoS One. V. 10. № 7. Art. e0133909. https://doi.org/10.1371/journal.pone.0133909
- Chung H.W., Kang S.J., Kim S.Y., 2002. A combination of the micronucleus assay and a FISH technique for evaluation of the genotoxicity of 1,2,4-benzenetriol // Mutat. Res. V. 516. № 1–2. P. 49–56.
- Crasta K., Ganem N.J., Dagher R., et al., 2012. DNA breaks and chromosome pulverization from errors in mitosis // Nature. V. 482. № 7383. P. 53–58. https://doi.org/10.1038/nature10802
- Decordier I., Dillen L., Cundari E., et al., 2002. Elimination of micronucleated cells by apoptosis after treatment with inhibitors of microtubules // Mutagenesis. V. 17. № 4. P. 337–344. https://doi.org/10.1093/mutage/17.4.337
- Dedukh D., Krasikova A., 2022. Delete and survive: Strategies of programmed genetic material elimination in eukaryotes // Biol. Rev. V. 97. № 1. P. 195–216. https://doi.org/10.1111/brv.12796
- Dumont M., Gamba R., Gestraud P., et al., 2020. Human chromosome-specific aneuploidy is influenced by DNA-dependent centromeric features // EMBO J. V. 39. Art. e102924.
- Faheem M., Naseer M.I., Rasool M., et al., 2015. Molecular genetics of human primary microcephaly: An overview // BMC Med. Genomics. V. 8. Art. S4. https://doi.org/10.1186/1755-8794-8-S1-S4
- Fang W., Wang X., Bracht J.R., et al., 2012. Piwi-interacting RNAs protect DNA against loss during Oxytricha genome rearrangement // Cell. V. 151. № 6. P. 1243–1255. https://doi.org/10.1016/j.cell.2012.10.045
- Fauth E., Scherthan H., 1998. Frequencies of occurence of all human chromosomes in micronuclei from normal and 5-azacytidine-treated lymphocytes as revealed by chromosome painting // Mutagenesis. V. 13. № 3. P. 235–241. https://doi.org/10.1093/mutage/13.3.235
- Fauth E., Scherthan H., Zankl H., 2000. Chromosome painting reveals specific patterns of chromosome occurrence in mitomycin C- and diethylstilbestrol-induced micronuclei // Mutagenesis. V. 15. № 6. P. 459–467. https://doi.org/10.1093/mutage/15.6.459
- Fauth E., Zankl H., 1999. Comparison of spontaneous and idoxuridine-induced micronuclei by chromosome painting // Mutat. Res. V. 440. № 2. P. 147–156. https://doi.org/10.1016/s1383-5718(99)00021-2
- Fenech M., 2007. Cytokinesis-block micronucleus cytome assay // Nat. Protoc. V. 2. P. 1084–1104. https://doi.org/10.1038/nprot.2007.77
- Fenech M., Holland N., Kirsch-Volders M., et al., 2019. Micronuclei and disease – Report of HUMN project workshop at Rennes 2019 EEMGS conference // Mutat. Res. Genet. Toxicol. Environ. Mutagen. V. 850– 851. Art. 503133. https://doi.org/10.1016/j.mrgentox.2020.503133
- Fenech M., Kirsch-Volders M., Natarajan A.T., et al., 2011. Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells // Mutagenesis. V. 26. № 1. P. 125–132. https://doi.org/10.1093/mutage/geq052
- Foster H.A., Estrada-Girona G., Themis M., et al., 2013. Relative proximity of chromosome territories influences chromosome exchange partners in radiation-induced chromosome rearrangements in primary human bronchial epithelial cells // Mutat. Res. V. 756. № 1–2. P. 66–77. https://doi.org/10.1016/j.mrgentox.2013.06.003
- García Fernández F., Fabre E., 2022. The dynamic behavior of chromatin in response to DNA double-strand breaks // Genes (Basel). V. 13. № 2. Art. 215. https://doi.org/10.3390/genes13020215
- Gernand D., Rutten T., Pickering R., Houben A., 2006. Elimination of chromosomes in Hordeum vulgare x H. bulbosum crosses at mitosis and interphase involves micronucleus formation and progressive heterochromatinization // Cytogenet. Genome Res. V. 114. № 2. P. 169–174. https://doi.org/10.1159/000093334
- Gisselsson D., Jonson T., Petersén A., et al., 2001. Telomere dysfunction triggers extensive DNA fragmentation and evolution of complex chromosome abnormalities in human malignant tumors // Proc. Natl Acad. Sci. USA. V. 98. № 22. P. 12683–12688. https://doi.org/10.1073/pnas.211357798
- Giunta S., Hervé S., White R.R., et al., 2021. CENP-A chromatin prevents replication stress at centromeres to avoid structural aneuploidy // Proc. Natl Acad. Sci. USA. V. 118. № 10. Art. e2015634118.
- Greciano P.G., Goday C., 2006. Methylation of histone H3 at Lys4 differs between paternal and maternal chromosomes in Sciara ocellaris germline development // J. Cell Sci. V. 119. № 22. P. 4667–4677. https://doi.org/10.1242/jcs.03279
- Guo X., Ni J., Liang Z., Xue J., Fenech M.F., Wang X., 2019. The molecular origins and pathophysiological consequences of micronuclei: New insights into an age-old problem // Mutat. Res. Rev. Mutat. Res. V. 779. P. 1–35. https://doi.org/10.1016/j.mrrev.2018.11.001
- Guttenbach M., Koschorz B., Bernthaler U., et al., 1995. Sex chromosome loss and aging: in situ hybridization studies on human interphase nuclei // Am. J. Human Genetics. V. 57. № 5. P. 1143–1150.
- Guttenbach M., Schmid M., 1994. Exclusion of specific human chromosomes into micronuclei by 5-azacytidine treatment of lymphocyte cultures // Exp. Cell Res. V. 211. № 1. P. 127–132. https://doi.org/10.1006/excr.1994.1068
- Halfmann C.T., Sears R.M., Katiyar A., et al., 2019. Repair of nuclear ruptures requires barrier-to-autointegration factor // J. Cell Biol. V. 218. № 7. P. 2136–2149. https://doi.org/10.1083/jcb.201901116
- Hämälistö S., Stahl J.L., Favaro E., et al., 2020. Spatially and temporally defined lysosomal leakage facilitates mitotic chromosome segregation // Nat. Commun. V. 11. № 1. Art. 229. https://doi.org/10.1038/s41467-019-14009-0
- Hayashi M., 2006. The micronucleus test-most widely used in vivo genotoxicity test // Genes Environ. V. 38. Art. 18. https://doi.org/10.1186/s41021-016-0044-x
- Holecková B., Piesová E., Sivikova K., Dianovskỳ J., 2004. Chromosomal aberrations in humans induced by benzene // Ann. Agric. Environ. Med. V. 11. № 2. P. 175–179.
- Hovhannisyan G., Aroutiounian R., Babayan N., et al., 2016. Comparative analysis of individual chromosome involvement in micronuclei induced by mitomycin C and bleomycin in human leukocytes // Mol. Cytogenet. V. 9. Art. 49. https://doi.org/10.1186/s13039-016-0258-4
- Hovhannisyan G., Aroutiounian R., Liehr T., 2012. Chromosomal composition of micronuclei in human leukocytes exposed to mitomycin C // J. Histochem. Cytochem. V. 60. № 4. P. 316–322. https://doi.org/10.1369/0022155412436587
- IAEA, 2011. International Atomic Energy Agency Technical Reports Series No. 405. Cytogenetic Analysis for Radiation Dose Assessment: A Manual. Vienna: IAEA. 127 р.
- Iliakis G., Wang H., Perrault A.R., et al., 2004. Mechanisms of DNA double strand break repair and chromosome aberration formation // Cytogenet. Genome Res. V. 104. № 1–4. P. 14–20. https://doi.org/10.1159/000077461
- Itoh N., Shimizu N., 1998. DNA replication-dependent intranuclear relocation of double minute chromatin // J. Cell Sci. V. 111. № 22. P. 3275–3285.
- Ivanov A., Pawlikowski J., Manoharan I., et al., 2013. Lysosome-mediated processing of chromatin in senescence // J. Cell Biol. V. 202. № 1. P. 129–143. https://doi.org/10.1083/jcb.201212110
- Jagannathan M., Cummings R., Yamashita Y.M., 2018. A conserved function for pericentromeric satellite DNA // Elife. V. 7. Art. e34122. https://doi.org/10.7554/eLife.34122
- Jagannathan M., Cummings R., Yamashita Y.M., 2019. The modular mechanism of chromocenter formation in Drosophila // Elife. V. 8. Art. e43938. https://doi.org/10.7554/eLife.43938
- Kirsch-Volders M., Bolognesi C., Ceppi M., et al., 2020. Micronuclei, inflammation and auto-immune disease // Mutat. Res. Rev. Mutat. Res. V. 786. Art. 108335. https://doi.org/10.1016/j.mrrev.2020.108335
- Lazalde-Ramos B.P., Zamora-Perez A.L., Sosa-Macías M., et al., 2012. DNA and oxidative damages decrease after ingestion of folic acid in patients with type 2 diabetes // Arch. Med. Res. V. 43. № 6. P. 476–481. https://doi.org/10.1016/j.arcmed.2012.08.013
- Leach N.T., Jackson-Cook C., 2001. The application of spectral karyotyping (SKY) and fluorescent in situ hybridization (FISH) technology to determine the chromosomal content(s) of micronuclei // Mutat. Res. V. 495. № 1–2. P. 11–19. https://doi.org/10.1016/s1383-5718(01)00194-2
- Lee T.K., Wiley A.L., Jr, Esinhart J.D., Blackburn L.D., 1994. Radiation dose-dependent variations of micronuclei production in cytochalasin B-blocked human lymphocytes // Teratog. Carcinog. Mutagen. V. 14. № 1. P. 1–12. https://doi.org/10.1002/tcm.1770140102
- Leimbacher P.A., Jones S.E., Shorrocks A.K., et al., 2019. MDC1 interacts with TOPBP1 to maintain chromosomal stability during mitosis // Mol. Cell. V. 74. № 3. P. 571–583.E8. https://doi.org/10.1016/j.molcel.2019.02.014
- Li T., Chen Z.J., 2018. The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer // J. Exp. Med. V. 215. № 5. P. 1287–1299. https://doi.org/10.1084/jem.20180139
- Lindberg H.K., Wang X., Järventaus H., Falck G.C., et al., 2007. Origin of nuclear buds and micronuclei in normal and folate-deprived human lymphocytes // Mutat. Res. V. 617. № 1–2. P. 33–45. https://doi.org/10.1016/j.mrfmmm.2006.12.002
- Liu H., Wang F., Cao Y., et al., 2022. The multifaceted functions of cGAS // J. Mol. Cell Biol. V. 14. № 5. Art. mjac031. https://doi.org/10.1093/jmcb/mjac031
- Liu S., Pellman D., 2020. The coordination of nuclear envelope assembly and chromosome segregation in metazoans // Nucleus. V. 11. № 1. P. 35–52. https://doi.org/10.1080/19491034.2020.1742064
- Lu L., Ni J., Zhou T., et al., 2012 Choline and/or folic acid deficiency is associated with genomic damage and cell death in human lymphocytes in vitro // Nutr. Cancer. V. 64. № 3. P. 481–487. https://doi.org/10.1080/01635581.2012.660671
- Mackenzie K.J., Carroll P., Martin C.A., et al., 2017. cGAS surveillance of micronuclei links genome instability to innate immunity // Nature. V. 548. № 7668. P. 461–465. https://doi.org/10.1038/nature23449
- Maiato H., Afonso O., Matos I., 2015. A chromosome separation checkpoint: A midzone Aurora B gradient mediates a chromosome separation checkpoint that regulates the anaphase-telophase transition // Bioessays. V. 37. № 3. P. 257–266. https://doi.org/10.1002/bies.201400140
- Malaby H.L.H., Dumas M.E., Ohi R., Stumpff J., 2019. Kinesin-binding protein ensures accurate chromosome segregation by buffering KIF18A and KIF15 // J. Cell Biol. V. 218. № 4. P. 1218–1234. https://doi.org/10.1083/jcb.201806195
- Medvedeva N.G., Panyutin I.V., Panyutin I.G., Neumann R.D., 2007. Phosphorylation of histone H2AX in radiation-induced micronuclei // Radiat. Res. V. 168. № 4. P. 493–498. https://doi.org/10.1667/RR0788.1
- Mochizuki K., 2010. DNA rearrangements directed by non-coding RNAs in ciliates // WIRs RNA. V. 1. № 3. P. 376–387. https://doi.org/10.1002/wrna.34
- Morgan W.F., Bair W.J., 2013. Issues in low dose radiation biology: the controversy continues. A perspective // Radiat. Res. V. 179. № 5. P. 501–510. https://doi.org/10.1667/RR3306.1
- Morishita M., Muramatsu T., Suto Y., et al., 2016. Chromothripsis-like chromosomal rearrangements induced by ionizing radiation using proton microbeam irradiation system // Oncotarget. V. 7. № 9. P. 10182–10192. https://doi.org/10.18632/oncotarget.7186
- Mukherjee A., Alejandro J., Payne S., Thomas S., 1996. Age-related aneuploidy analysis of human blood cells in vivo by fluorescence in situ hybridization (FISH) // Mech. Ageing Dev. V. 90. P. 145–156. https://doi.org/10.1016/0047-6374(96)01762-9
- Nikitina V., Nugis V., Astrelina T., et al., 2022. Pattern of chromosomal aberrations persisting over 30 years in a Chernobyl Nuclear Power Plant accident survivor: study using mFISH // J. Radiat. Res. V. 63. № 2. P. 202–212. https://doi.org/10.1093/jrr/rrab131
- Okamoto A., Utani K., Shimizu N., 2011. DNA replication occurs in all lamina positive micronuclei, but never in lamina negative micronuclei // Mutagenesis. V. 27. № 3. P. 323–327.
- Oliveira Mann C.C., de, Kranzusch P.J., 2017. cGAS conducts micronuclei DNA surveillance // Trends Cell Biol. V. 27. № 10. P. 697–698. https://doi.org/10.1016/j.tcb.2017.08.007
- Oza P., Jaspersen S.L., Miele A., et al., 2009. Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery // Genes Dev. V. 23. № 8. P. 912–927. https://doi.org/10.1101/gad.1782209
- Pang D., Yu S., Yang X., 2022. A mini-review of the role of condensin in human nervous system diseases // Front. Mol. Neurosci. V. 15. Art. 89796. https://doi.org/10.3389/fnmol.2022.889796
- Perondini A., Ribeiro A., 1997. Chromosome elimination in germ cells of Sciara embryos: involvement of the nuclear envelope // Invertebr. Reprod. Dev. V. 32. № 2. P. 131–141. https://doi.org/10.1080/07924259.1997.9672614
- Pfeiffer P., Goedecke W., Obe G., 2000. Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations // Mutagenesis. V. 15. № 4. P. 289–302. https://doi.org/10.1093/mutage/15.4.289
- Prantera G., Bongiorni S., 2012. Mealybug chromosome cycle as a paradigm of epigenetics // Genet. Res. Int. V. 2012. Art. 867390. https://doi.org/10.1155/2012/867390
- Priore L., del, Pigozzi M.I., 2014. Histone modifications related to chromosome silencing and elimination during male meiosis in Bengalese finch // Chromosoma. V. 123. № 3. P. 293–302. https://doi.org/10.1007/s00412-014-0451-3
- Reimann H., Stopper H., Hintzsche H., 2020. Long-term fate of etoposide-induced micronuclei and micronucleated cells in Hela-H2B-GFP cells // Arch. Toxicol. V. 94. № 10. Р. 3553–3561. https://doi.org/10.1007/s00204-020-02840-0
- Reimann H., Stopper H., Hintzsche H., 2023. Fate of micronuclei and micronucleated cells after treatment of HeLa cells with different genotoxic agents // Arch. Toxicol. V. 97. № 3. P. 875–889. https://doi.org/10.1007/s00204-022-03433-9
- Robijns J., Houthaeve G., Braeckmans K., De Vos W.H., 2018. Loss of nuclear envelope integrity in aging and disease // Int. Rev. Cell Mol. Biol. V. 336. P. 205–222. https://doi.org/10.1016/bs.ircmb.2017.07.013
- Ruban A., Schmutzer T., Wu D.D., et al., 2020. Supernumerary B chromosomes of Aegilops speltoides undergo precise elimination in roots early in embryo development // Nat. Commun. V. 11. Art. 2764. https://doi.org/10.1038/s41467-020-16594-x
- Samwer M., Schneider M.W.G., Hoefler R., et al., 2017. DNA cross-bridging shapes a single nucleus from a set of mitotic chromosomes // Cell. V. 170. № 5. P. 956– 972.Е23. https://doi.org/10.1016/j.cell.2017.07.038
- Sawyer J.R., Swanson C.M., Wheeler G., Cunniff C., 1995. Chromosome instability in ICF syndrome: Formation of micronuclei from multibranched chromosomes 1 demonstrated by fluorescence in situ hybridization // Am. J. Med. Genet. V. 56. № 2. P. 203–209. https://doi.org/10.1002/ajmg.1320560218
- Sgura A., Antoccia A., Ramirez M.J., et al., 1997. Micronuclei, centromere-positive micronuclei and chromosome nondisjunction in cytokinesis blocked human lymphocytes following mitomycin C or vincristine treatment // Mutat. Res. V. 392. № 1–2. P. 97–107. https://doi.org/10.1016/s0165-1218(97)00048-7
- Shimizu N., Itoh N., Utiyama H., Wahl G.M., 1998. Selective entrapment of extrachromosomally amplified DNA by nuclear budding and micronucleation during S phase // J. Cell Biol. V. 140. № 6. P. 1307–1320. https://doi.org/10.1083/jcb.140.6.1307
- Shimizu N., Kapoor R., Naniwa S., et al., 2019. Generation and maintenance of acentric stable double minutes from chromosome arms in inter-species hybrid cells // BMC Mol. Cell Biol. V. 20. Art. 2. https://doi.org/10.1186/s12860-019-0186-3
- Soto M., García-Santisteban I., Krenning L., et al., 2018. Chromosomes trapped in micronuclei are liable to segregation errors // J. Cell Sci. V. 131. № 13. Art. jcs214742. https://doi.org/10.1242/jcs.214742
- Stacey M., Bennett M., Hulten M., 1995. FISH analysis on spontaneously arising micronuclei in the ICF syndrome // J. Med. Genetics. V. 32. № 7. P. 502–508. https://doi.org/10.1136/jmg.32.7.502
- Staiber W., 2006. Chromosome elimination in germ line–soma differentiation of Acricotopus lucidus (Diptera, Chironomidae) // Genome. V. 49. № 3. P. 269–274. https://doi.org/10.1139/g05-103
- Stopper H., Körber C., Gibis P., et al., 1995. Micronuclei induced by modulators of methylation: analogs of 5-azacytidine // Carcinogenesis. V. 16. № 7. P. 1647– 1650. https://doi.org/10.1093/carcin/16.7.1647
- Suzuki K., Ojima M., Kodama S., Watanabe M., 2003. Radiation-induced DNA damage and delayed induced genomic instability // Oncogene. V. 22. P. 6988–6993. https://doi.org/10.1038/sj.onc.1206881
- Télez M., Ortiz-Lastra E., Gonzalez A.J., et al., 2010. Assessment of the genotoxicity of atenolol in human peripheral blood lymphocytes: Correlation between chromosomal fragility and content of micronuclei // Mutat. Res. V. 695. № 1–2. P. 46–54. https://doi.org/10.1016/j.mrgentox.2009.02.015
- Terradas M., Martín M., Tusell L., Genescà A., 2009. DNA lesions sequestered in micronuclei induce a local defective-damage response // DNA Repair. V. 8. № 10. P. 1225–1234. https://doi.org/10.1016/j.dnarep.2009.07.004
- Tewari S., Khan K., Husain N., et al., 2016. Peripheral blood lymphocytes as in vitro model to evaluate genomic instability caused by low dose radiation // Asian Pac. J. Cancer Prev. V. 17. № 4. P. 1773–1777. https://doi.org/10.7314/apjcp.2016.17.4.1773
- Thierens H., Vral A., Morthier R., et al., 2000. Cytogenetic monitoring of hospital workers occupationally exposed to ionizing radiation using the micronucleus centromere assay // Mutagenesis. V. 15. № 3. P. 245–249. https://doi.org/10.1093/mutage/15.3.245
- Timoshevskiy V.A., Herdy J.R., Keinath M.C., Smith J.J., 2016. Cellular and molecular features of developmentally programmed genome rearrangement in a vertebrate (sea lamprey: Petromyzon marinus) // PLoS Genet. V. 12. № 6. Art. e1006103. https://doi.org/10.1371/journal.pgen.1006103
- Tommerup N., 1984. Idoxuridine induction of micronuclei containing the long or short arms of human chromosome 9 // Cytogenet. Cell Genet. V. 38. № 2. P. 92–98. https://doi.org/10.1159/000132038
- Tuck-Muller C.M., Narayan A., Tsien F., et al., 2000. DNA hypomethylation and unusual chromosome instability in cell lines from ICF syndrome patients // Cytogenet. Cell Genet. V. 89. № 1–2. P. 121–128. https://doi.org/10.1159/000015590
- Umbreit N.T., Zhang C.Z., Lynch L.D., et al., 2020. Mechanisms generating cancer genome complexity from a single cell division error // Science. V. 368. № 6488. Art. eaba0712. https://doi.org/10.1126/science.aba0712
- Utani K., Okamoto A., Shimizu N., 2011. Generation of micronuclei during interphase by coupling between cytoplasmic membrane blebbing and nuclear budding // PloS One. V. 6. № 11. Art. e27233.
- Walker J.A., Boreham D.R., Unrau P., Duncan A.M., 1996. Chromosome content and ultrastructure of radiation-induced micronuclei // Mutagenesis. V. 11. № 5. P. 419–424. https://doi.org/10.1093/mutage/11.5.419
- Warecki B., Ling X., Bast I., Sullivan W., 2020. ESCRT-III-mediated membrane fusion drives chromosome fragments through nuclear envelope channels // J. Cell Biol. V. 219. № 3. Art. e201905091. https://doi.org/10.1083/jcb.201905091
- Zhang C.Z., Spektor A., Cornils H., et al., 2015. Chromothripsis from DNA damage in micronuclei // Nature. V. 522. № 7555. P. 179–184. https://doi.org/10.1038/nature14493
- Zhang L., Rothman N., Wang Y., et al., 1998. Increased aneusomy and long arm deletion of chromosomes 5 and 7 in the lymphocytes of Chinese workers exposed to benzene // Carcinogenesis. V. 19. № 11. P. 1955–1961. https://doi.org/10.1093/carcin/19.11.1955
Supplementary files
