The role of micronuclei in chromatin elimination

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Micronuclei are the extra-nuclear chromatin compartments separated from the primary nucleus and surrounded by their own nuclear envelope. For a long time it has been thought that micronuclei is the final stage of the pathological process in a cell. They have been used as biomarkers of the influence of genotoxic factors as well as of genome instability in various diseases. Nowadays, it is demonstrated that micronuclei could be involved in the cellular activities, affect the nuclear genome and lead to the changes in cell and tissue physiology. It is known that the formation of micronuclei is one of the steps in selective chromatin elimination in the ontogenesis of plant and animal species. The regions to be marked and eliminated from cell nucleus are recognized at the level of genome. This process is often accompanied by modifications with the heterochromatin formation, changes in the chromosome condensation and in the position of chromosomes in the nucleus. The processes observed in selective and non-selective chromatin elimination are similar to a great extent. The fact that the role of micronuclei in the cell functioning is not well-known yet, and the composition of the micronuclei and the ways of chromatin elimination could influence their role in the development of the pathogenesis, emphasizes the importance of additional studies for a more profound investigation of this phenomenon.

Full Text

Restricted Access

About the authors

Yu. R. Akhmadullina

Urals Research Center for Radiation Medicine, Federal Medical Biological Agency; Chelyabinsk State University

Author for correspondence.
Email: akhmadullina.yul@yandex.ru
Russian Federation, 454141, Chelyabinsk, Vorovskogo st., 68A; 454001, Chelyabinsk, Brothers Kashirinykh st., 129

P. O. Khomenko

Urals Research Center for Radiation Medicine, Federal Medical Biological Agency

Email: akhmadullina.yul@yandex.ru
Russian Federation, 454141, Chelyabinsk, Vorovskogo st., 68A

References

  1. Ахмадуллина Ю.Р., 2022. Состав микроядер в Т-лимфоцитах у женщин, подвергшихся хроническому радиационному воздействию // Радиационная биология. Радиоэкология. Т. 62. № 6. С. 591–601. https://doi.org/10.31857/S0869803122060030
  2. Боголюбова И.О., Боголюбов Д.С., 2023. Функциональные взаимодействия BAF и LEM-белков в процессах формирования половых клеток // Цитология. Т. 65. № 5. С. 407–419. https://doi.org/10.31857/S0041377123050036
  3. Кисурина-Евгеньева О.П., Брянцева С.А., Штиль А.А., Онищенко Г.Е., 2006. Антитубулиновые агенты могут инициировать различные пути апоптоза // Биофизика. Т. 51. № 5. С. 875–880.
  4. Кисурина-Евгеньева О.П., Сутягина О.И., Онищенко Г.Е., 2016. Биогенез микроядер // Биохимия. T. 81. C. 453–464. https://doi.org/10.1134/S0006297916050035
  5. Ablasser A., Chen Z.J., 2019. cGAS in action: Expanding roles in immunity and inflammation // Science. V. 363. № 6431. Art. eaat8657. https://doi.org/10.1126/science.aat8657
  6. Almacellas E., Pelletier J., Day C., et al., 2021. Lysosomal degradation ensures accurate chromosomal segregation to prevent chromosomal instability // Autophagy. V. 17. № 3. P. 796–813. https://doi.org/10.1080/15548627.2020.1764727
  7. Arsoy N.S., Neuss S., Wessendorf S., et al., 2009. Micronuclei in peripheral blood from patients after cytostatic therapy mainly arise ex vivo from persistent damage // Mutagenesis. V. 24. № 4. P. 351–357. https://doi.org/10.1093/mutage/gep015
  8. Bailey L.J., Bianchi J., Doherty A.J., 2019. PrimPol is required for the maintenance of efficient nuclear and mitochondrial DNA replication in human cells // Nucleic Acids Res. V. 47. № 8. P. 4026–4038. https://doi.org/10.1093/nar/gkz056
  9. Balajee A., Bertucci A., Taveras M., Brenner D., 2014. Multicolour FISH analysis of ionising radiation induced micronucleus formation in human lymphocytes // Mutagenesis. V. 29. P. 447–455. https://doi.org/10.1093/mutage/geu041
  10. Balajee A.S., Sanders J.T., Golloshi R., et al., 2018. Investigation of spatial organization of chromosome territories in chromosome exchange aberrations after ionizing radiation exposure // Health Phys. V. 115. P. 77–89. https://doi.org/10.1097/HP.0000000000000840
  11. Bao H., Cao J., et al. (Aging Biomarker Consortium), 2023. Biomarkers of aging // Sci. China Life Sci. V. 66. P. 893–1066. https://doi.org/10.1007/s11427-023-2305-0
  12. Barbu L., Obreja D., Duliu O., 2019. The cell micronuclei response to ionizing radiation in the case of gamma and x-ray exposure // Romanian J. Physics. V. 64. Art. 702.
  13. Barquinero J.F., Knehr S., Braselmann H., et al., 1998. DNA-proportional distribution of radiation-induced chromosome aberrations analyzed by fluorescence in situ hybridization painting of all chromosomes of a human female karyotype // Int. J. Radiat. Biol. V. 74. № 3. P. 315–323. https://doi.org/10.1080/095530098141456
  14. Bartsch K., Knittler K., Borowski C., et al., 2017. Absence of RNase H2 triggers generation of immunogenic micronuclei removed by autophagy // Hum. Mol. Genet. V. 26. № 20. P. 3960–3972. https://doi.org/10.1093/hmg/ddx283
  15. Bonacci T., Emanuele M.J., 2019. Impressionist portraits of mitotic exit: APC/C, K11-linked ubiquitin chains and Cezanne // Cell Cycle. V. 18. № 6–7. P. 652–660. https://doi.org/10.1080/15384101.2019.1593646
  16. Bull C.F., Mayrhofer G., Zeegers D., et al., 2012. Folate deficiency is associated with the formation of complex nuclear anomalies in the cytokinesis-block micronucleus cytome assay // Environ. Mol. Mutagen. V. 53. № 4. P. 311–323. https://doi.org/10.1002/em.21688
  17. Chang L., Li M., Shao S., et al., 2022. Nuclear peripheral chromatin-lamin B1 interaction is required for global integrity of chromatin architecture and dynamics in human cells // Protein Cell. V. 13. P. 258–280. https://doi.org/10.1007/s13238-020-00794-8
  18. Chen Q., Sun L., Chen Z.J., 2016. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing // Nat. Immunol. V. 17. № 10. P. 1142–1149. https://doi.org/10.1038/ni.3558
  19. Cho Y.H., Jang Y., Woo H.D., et al., 2019. LINE-1 hypomethylation is associated with radiation-induced genomic instability in industrial radiographers // Environ. Mol. Mutagen. V. 60. № 2. P. 174–184. https://doi.org/10.1002/em.22237
  20. Cho Y.H., Kim S.Y., Woo H.D., et al., 2015a. Delayed numerical chromosome aberrations in human fibroblasts by low dose of radiation // Int. J. Environ. Res. Public Health. V. 12. P. 15162–15172. https://doi.org/10.3390/ijerph121214979
  21. Cho Y.H., Woo H.D., Jang Y., et al., 2015b. The association of LINE-1 hypomethylation with age and centromere positive micronuclei in human lymphocytes // PLoS One. V. 10. № 7. Art. e0133909. https://doi.org/10.1371/journal.pone.0133909
  22. Chung H.W., Kang S.J., Kim S.Y., 2002. A combination of the micronucleus assay and a FISH technique for evaluation of the genotoxicity of 1,2,4-benzenetriol // Mutat. Res. V. 516. № 1–2. P. 49–56.
  23. Crasta K., Ganem N.J., Dagher R., et al., 2012. DNA breaks and chromosome pulverization from errors in mitosis // Nature. V. 482. № 7383. P. 53–58. https://doi.org/10.1038/nature10802
  24. Decordier I., Dillen L., Cundari E., et al., 2002. Elimination of micronucleated cells by apoptosis after treatment with inhibitors of microtubules // Mutagenesis. V. 17. № 4. P. 337–344. https://doi.org/10.1093/mutage/17.4.337
  25. Dedukh D., Krasikova A., 2022. Delete and survive: Strategies of programmed genetic material elimination in eukaryotes // Biol. Rev. V. 97. № 1. P. 195–216. https://doi.org/10.1111/brv.12796
  26. Dumont M., Gamba R., Gestraud P., et al., 2020. Human chromosome-specific aneuploidy is influenced by DNA-dependent centromeric features // EMBO J. V. 39. Art. e102924.
  27. Faheem M., Naseer M.I., Rasool M., et al., 2015. Molecular genetics of human primary microcephaly: An overview // BMC Med. Genomics. V. 8. Art. S4. https://doi.org/10.1186/1755-8794-8-S1-S4
  28. Fang W., Wang X., Bracht J.R., et al., 2012. Piwi-interacting RNAs protect DNA against loss during Oxytricha genome rearrangement // Cell. V. 151. № 6. P. 1243–1255. https://doi.org/10.1016/j.cell.2012.10.045
  29. Fauth E., Scherthan H., 1998. Frequencies of occurence of all human chromosomes in micronuclei from normal and 5-azacytidine-treated lymphocytes as revealed by chromosome painting // Mutagenesis. V. 13. № 3. P. 235–241. https://doi.org/10.1093/mutage/13.3.235
  30. Fauth E., Scherthan H., Zankl H., 2000. Chromosome painting reveals specific patterns of chromosome occurrence in mitomycin C- and diethylstilbestrol-induced micronuclei // Mutagenesis. V. 15. № 6. P. 459–467. https://doi.org/10.1093/mutage/15.6.459
  31. Fauth E., Zankl H., 1999. Comparison of spontaneous and idoxuridine-induced micronuclei by chromosome painting // Mutat. Res. V. 440. № 2. P. 147–156. https://doi.org/10.1016/s1383-5718(99)00021-2
  32. Fenech M., 2007. Cytokinesis-block micronucleus cytome assay // Nat. Protoc. V. 2. P. 1084–1104. https://doi.org/10.1038/nprot.2007.77
  33. Fenech M., Holland N., Kirsch-Volders M., et al., 2019. Micronuclei and disease – Report of HUMN project workshop at Rennes 2019 EEMGS conference // Mutat. Res. Genet. Toxicol. Environ. Mutagen. V. 850– 851. Art. 503133. https://doi.org/10.1016/j.mrgentox.2020.503133
  34. Fenech M., Kirsch-Volders M., Natarajan A.T., et al., 2011. Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells // Mutagenesis. V. 26. № 1. P. 125–132. https://doi.org/10.1093/mutage/geq052
  35. Foster H.A., Estrada-Girona G., Themis M., et al., 2013. Relative proximity of chromosome territories influences chromosome exchange partners in radiation-induced chromosome rearrangements in primary human bronchial epithelial cells // Mutat. Res. V. 756. № 1–2. P. 66–77. https://doi.org/10.1016/j.mrgentox.2013.06.003
  36. García Fernández F., Fabre E., 2022. The dynamic behavior of chromatin in response to DNA double-strand breaks // Genes (Basel). V. 13. № 2. Art. 215. https://doi.org/10.3390/genes13020215
  37. Gernand D., Rutten T., Pickering R., Houben A., 2006. Elimination of chromosomes in Hordeum vulgare x H. bulbosum crosses at mitosis and interphase involves micronucleus formation and progressive heterochromatinization // Cytogenet. Genome Res. V. 114. № 2. P. 169–174. https://doi.org/10.1159/000093334
  38. Gisselsson D., Jonson T., Petersén A., et al., 2001. Telomere dysfunction triggers extensive DNA fragmentation and evolution of complex chromosome abnormalities in human malignant tumors // Proc. Natl Acad. Sci. USA. V. 98. № 22. P. 12683–12688. https://doi.org/10.1073/pnas.211357798
  39. Giunta S., Hervé S., White R.R., et al., 2021. CENP-A chromatin prevents replication stress at centromeres to avoid structural aneuploidy // Proc. Natl Acad. Sci. USA. V. 118. № 10. Art. e2015634118.
  40. Greciano P.G., Goday C., 2006. Methylation of histone H3 at Lys4 differs between paternal and maternal chromosomes in Sciara ocellaris germline development // J. Cell Sci. V. 119. № 22. P. 4667–4677. https://doi.org/10.1242/jcs.03279
  41. Guo X., Ni J., Liang Z., Xue J., Fenech M.F., Wang X., 2019. The molecular origins and pathophysiological consequences of micronuclei: New insights into an age-old problem // Mutat. Res. Rev. Mutat. Res. V. 779. P. 1–35. https://doi.org/10.1016/j.mrrev.2018.11.001
  42. Guttenbach M., Koschorz B., Bernthaler U., et al., 1995. Sex chromosome loss and aging: in situ hybridization studies on human interphase nuclei // Am. J. Human Genetics. V. 57. № 5. P. 1143–1150.
  43. Guttenbach M., Schmid M., 1994. Exclusion of specific human chromosomes into micronuclei by 5-azacytidine treatment of lymphocyte cultures // Exp. Cell Res. V. 211. № 1. P. 127–132. https://doi.org/10.1006/excr.1994.1068
  44. Halfmann C.T., Sears R.M., Katiyar A., et al., 2019. Repair of nuclear ruptures requires barrier-to-autointegration factor // J. Cell Biol. V. 218. № 7. P. 2136–2149. https://doi.org/10.1083/jcb.201901116
  45. Hämälistö S., Stahl J.L., Favaro E., et al., 2020. Spatially and temporally defined lysosomal leakage facilitates mitotic chromosome segregation // Nat. Commun. V. 11. № 1. Art. 229. https://doi.org/10.1038/s41467-019-14009-0
  46. Hayashi M., 2006. The micronucleus test-most widely used in vivo genotoxicity test // Genes Environ. V. 38. Art. 18. https://doi.org/10.1186/s41021-016-0044-x
  47. Holecková B., Piesová E., Sivikova K., Dianovskỳ J., 2004. Chromosomal aberrations in humans induced by benzene // Ann. Agric. Environ. Med. V. 11. № 2. P. 175–179.
  48. Hovhannisyan G., Aroutiounian R., Babayan N., et al., 2016. Comparative analysis of individual chromosome involvement in micronuclei induced by mitomycin C and bleomycin in human leukocytes // Mol. Cytogenet. V. 9. Art. 49. https://doi.org/10.1186/s13039-016-0258-4
  49. Hovhannisyan G., Aroutiounian R., Liehr T., 2012. Chromosomal composition of micronuclei in human leukocytes exposed to mitomycin C // J. Histochem. Cytochem. V. 60. № 4. P. 316–322. https://doi.org/10.1369/0022155412436587
  50. IAEA, 2011. International Atomic Energy Agency Technical Reports Series No. 405. Cytogenetic Analysis for Radiation Dose Assessment: A Manual. Vienna: IAEA. 127 р.
  51. Iliakis G., Wang H., Perrault A.R., et al., 2004. Mechanisms of DNA double strand break repair and chromosome aberration formation // Cytogenet. Genome Res. V. 104. № 1–4. P. 14–20. https://doi.org/10.1159/000077461
  52. Itoh N., Shimizu N., 1998. DNA replication-dependent intranuclear relocation of double minute chromatin // J. Cell Sci. V. 111. № 22. P. 3275–3285.
  53. Ivanov A., Pawlikowski J., Manoharan I., et al., 2013. Lysosome-mediated processing of chromatin in senescence // J. Cell Biol. V. 202. № 1. P. 129–143. https://doi.org/10.1083/jcb.201212110
  54. Jagannathan M., Cummings R., Yamashita Y.M., 2018. A conserved function for pericentromeric satellite DNA // Elife. V. 7. Art. e34122. https://doi.org/10.7554/eLife.34122
  55. Jagannathan M., Cummings R., Yamashita Y.M., 2019. The modular mechanism of chromocenter formation in Drosophila // Elife. V. 8. Art. e43938. https://doi.org/10.7554/eLife.43938
  56. Kirsch-Volders M., Bolognesi C., Ceppi M., et al., 2020. Micronuclei, inflammation and auto-immune disease // Mutat. Res. Rev. Mutat. Res. V. 786. Art. 108335. https://doi.org/10.1016/j.mrrev.2020.108335
  57. Lazalde-Ramos B.P., Zamora-Perez A.L., Sosa-Macías M., et al., 2012. DNA and oxidative damages decrease after ingestion of folic acid in patients with type 2 diabetes // Arch. Med. Res. V. 43. № 6. P. 476–481. https://doi.org/10.1016/j.arcmed.2012.08.013
  58. Leach N.T., Jackson-Cook C., 2001. The application of spectral karyotyping (SKY) and fluorescent in situ hybridization (FISH) technology to determine the chromosomal content(s) of micronuclei // Mutat. Res. V. 495. № 1–2. P. 11–19. https://doi.org/10.1016/s1383-5718(01)00194-2
  59. Lee T.K., Wiley A.L., Jr, Esinhart J.D., Blackburn L.D., 1994. Radiation dose-dependent variations of micronuclei production in cytochalasin B-blocked human lymphocytes // Teratog. Carcinog. Mutagen. V. 14. № 1. P. 1–12. https://doi.org/10.1002/tcm.1770140102
  60. Leimbacher P.A., Jones S.E., Shorrocks A.K., et al., 2019. MDC1 interacts with TOPBP1 to maintain chromosomal stability during mitosis // Mol. Cell. V. 74. № 3. P. 571–583.E8. https://doi.org/10.1016/j.molcel.2019.02.014
  61. Li T., Chen Z.J., 2018. The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer // J. Exp. Med. V. 215. № 5. P. 1287–1299. https://doi.org/10.1084/jem.20180139
  62. Lindberg H.K., Wang X., Järventaus H., Falck G.C., et al., 2007. Origin of nuclear buds and micronuclei in normal and folate-deprived human lymphocytes // Mutat. Res. V. 617. № 1–2. P. 33–45. https://doi.org/10.1016/j.mrfmmm.2006.12.002
  63. Liu H., Wang F., Cao Y., et al., 2022. The multifaceted functions of cGAS // J. Mol. Cell Biol. V. 14. № 5. Art. mjac031. https://doi.org/10.1093/jmcb/mjac031
  64. Liu S., Pellman D., 2020. The coordination of nuclear envelope assembly and chromosome segregation in metazoans // Nucleus. V. 11. № 1. P. 35–52. https://doi.org/10.1080/19491034.2020.1742064
  65. Lu L., Ni J., Zhou T., et al., 2012 Choline and/or folic acid deficiency is associated with genomic damage and cell death in human lymphocytes in vitro // Nutr. Cancer. V. 64. № 3. P. 481–487. https://doi.org/10.1080/01635581.2012.660671
  66. Mackenzie K.J., Carroll P., Martin C.A., et al., 2017. cGAS surveillance of micronuclei links genome instability to innate immunity // Nature. V. 548. № 7668. P. 461–465. https://doi.org/10.1038/nature23449
  67. Maiato H., Afonso O., Matos I., 2015. A chromosome separation checkpoint: A midzone Aurora B gradient mediates a chromosome separation checkpoint that regulates the anaphase-telophase transition // Bioessays. V. 37. № 3. P. 257–266. https://doi.org/10.1002/bies.201400140
  68. Malaby H.L.H., Dumas M.E., Ohi R., Stumpff J., 2019. Kinesin-binding protein ensures accurate chromosome segregation by buffering KIF18A and KIF15 // J. Cell Biol. V. 218. № 4. P. 1218–1234. https://doi.org/10.1083/jcb.201806195
  69. Medvedeva N.G., Panyutin I.V., Panyutin I.G., Neumann R.D., 2007. Phosphorylation of histone H2AX in radiation-induced micronuclei // Radiat. Res. V. 168. № 4. P. 493–498. https://doi.org/10.1667/RR0788.1
  70. Mochizuki K., 2010. DNA rearrangements directed by non-coding RNAs in ciliates // WIRs RNA. V. 1. № 3. P. 376–387. https://doi.org/10.1002/wrna.34
  71. Morgan W.F., Bair W.J., 2013. Issues in low dose radiation biology: the controversy continues. A perspective // Radiat. Res. V. 179. № 5. P. 501–510. https://doi.org/10.1667/RR3306.1
  72. Morishita M., Muramatsu T., Suto Y., et al., 2016. Chromothripsis-like chromosomal rearrangements induced by ionizing radiation using proton microbeam irradiation system // Oncotarget. V. 7. № 9. P. 10182–10192. https://doi.org/10.18632/oncotarget.7186
  73. Mukherjee A., Alejandro J., Payne S., Thomas S., 1996. Age-related aneuploidy analysis of human blood cells in vivo by fluorescence in situ hybridization (FISH) // Mech. Ageing Dev. V. 90. P. 145–156. https://doi.org/10.1016/0047-6374(96)01762-9
  74. Nikitina V., Nugis V., Astrelina T., et al., 2022. Pattern of chromosomal aberrations persisting over 30 years in a Chernobyl Nuclear Power Plant accident survivor: study using mFISH // J. Radiat. Res. V. 63. № 2. P. 202–212. https://doi.org/10.1093/jrr/rrab131
  75. Okamoto A., Utani K., Shimizu N., 2011. DNA replication occurs in all lamina positive micronuclei, but never in lamina negative micronuclei // Mutagenesis. V. 27. № 3. P. 323–327.
  76. Oliveira Mann C.C., de, Kranzusch P.J., 2017. cGAS conducts micronuclei DNA surveillance // Trends Cell Biol. V. 27. № 10. P. 697–698. https://doi.org/10.1016/j.tcb.2017.08.007
  77. Oza P., Jaspersen S.L., Miele A., et al., 2009. Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery // Genes Dev. V. 23. № 8. P. 912–927. https://doi.org/10.1101/gad.1782209
  78. Pang D., Yu S., Yang X., 2022. A mini-review of the role of condensin in human nervous system diseases // Front. Mol. Neurosci. V. 15. Art. 89796. https://doi.org/10.3389/fnmol.2022.889796
  79. Perondini A., Ribeiro A., 1997. Chromosome elimination in germ cells of Sciara embryos: involvement of the nuclear envelope // Invertebr. Reprod. Dev. V. 32. № 2. P. 131–141. https://doi.org/10.1080/07924259.1997.9672614
  80. Pfeiffer P., Goedecke W., Obe G., 2000. Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations // Mutagenesis. V. 15. № 4. P. 289–302. https://doi.org/10.1093/mutage/15.4.289
  81. Prantera G., Bongiorni S., 2012. Mealybug chromosome cycle as a paradigm of epigenetics // Genet. Res. Int. V. 2012. Art. 867390. https://doi.org/10.1155/2012/867390
  82. Priore L., del, Pigozzi M.I., 2014. Histone modifications related to chromosome silencing and elimination during male meiosis in Bengalese finch // Chromosoma. V. 123. № 3. P. 293–302. https://doi.org/10.1007/s00412-014-0451-3
  83. Reimann H., Stopper H., Hintzsche H., 2020. Long-term fate of etoposide-induced micronuclei and micronucleated cells in Hela-H2B-GFP cells // Arch. Toxicol. V. 94. № 10. Р. 3553–3561. https://doi.org/10.1007/s00204-020-02840-0
  84. Reimann H., Stopper H., Hintzsche H., 2023. Fate of micronuclei and micronucleated cells after treatment of HeLa cells with different genotoxic agents // Arch. Toxicol. V. 97. № 3. P. 875–889. https://doi.org/10.1007/s00204-022-03433-9
  85. Robijns J., Houthaeve G., Braeckmans K., De Vos W.H., 2018. Loss of nuclear envelope integrity in aging and disease // Int. Rev. Cell Mol. Biol. V. 336. P. 205–222. https://doi.org/10.1016/bs.ircmb.2017.07.013
  86. Ruban A., Schmutzer T., Wu D.D., et al., 2020. Supernumerary B chromosomes of Aegilops speltoides undergo precise elimination in roots early in embryo development // Nat. Commun. V. 11. Art. 2764. https://doi.org/10.1038/s41467-020-16594-x
  87. Samwer M., Schneider M.W.G., Hoefler R., et al., 2017. DNA cross-bridging shapes a single nucleus from a set of mitotic chromosomes // Cell. V. 170. № 5. P. 956– 972.Е23. https://doi.org/10.1016/j.cell.2017.07.038
  88. Sawyer J.R., Swanson C.M., Wheeler G., Cunniff C., 1995. Chromosome instability in ICF syndrome: Formation of micronuclei from multibranched chromosomes 1 demonstrated by fluorescence in situ hybridization // Am. J. Med. Genet. V. 56. № 2. P. 203–209. https://doi.org/10.1002/ajmg.1320560218
  89. Sgura A., Antoccia A., Ramirez M.J., et al., 1997. Micronuclei, centromere-positive micronuclei and chromosome nondisjunction in cytokinesis blocked human lymphocytes following mitomycin C or vincristine treatment // Mutat. Res. V. 392. № 1–2. P. 97–107. https://doi.org/10.1016/s0165-1218(97)00048-7
  90. Shimizu N., Itoh N., Utiyama H., Wahl G.M., 1998. Selective entrapment of extrachromosomally amplified DNA by nuclear budding and micronucleation during S phase // J. Cell Biol. V. 140. № 6. P. 1307–1320. https://doi.org/10.1083/jcb.140.6.1307
  91. Shimizu N., Kapoor R., Naniwa S., et al., 2019. Generation and maintenance of acentric stable double minutes from chromosome arms in inter-species hybrid cells // BMC Mol. Cell Biol. V. 20. Art. 2. https://doi.org/10.1186/s12860-019-0186-3
  92. Soto M., García-Santisteban I., Krenning L., et al., 2018. Chromosomes trapped in micronuclei are liable to segregation errors // J. Cell Sci. V. 131. № 13. Art. jcs214742. https://doi.org/10.1242/jcs.214742
  93. Stacey M., Bennett M., Hulten M., 1995. FISH analysis on spontaneously arising micronuclei in the ICF syndrome // J. Med. Genetics. V. 32. № 7. P. 502–508. https://doi.org/10.1136/jmg.32.7.502
  94. Staiber W., 2006. Chromosome elimination in germ line–soma differentiation of Acricotopus lucidus (Diptera, Chironomidae) // Genome. V. 49. № 3. P. 269–274. https://doi.org/10.1139/g05-103
  95. Stopper H., Körber C., Gibis P., et al., 1995. Micronuclei induced by modulators of methylation: analogs of 5-azacytidine // Carcinogenesis. V. 16. № 7. P. 1647– 1650. https://doi.org/10.1093/carcin/16.7.1647
  96. Suzuki K., Ojima M., Kodama S., Watanabe M., 2003. Radiation-induced DNA damage and delayed induced genomic instability // Oncogene. V. 22. P. 6988–6993. https://doi.org/10.1038/sj.onc.1206881
  97. Télez M., Ortiz-Lastra E., Gonzalez A.J., et al., 2010. Assessment of the genotoxicity of atenolol in human peripheral blood lymphocytes: Correlation between chromosomal fragility and content of micronuclei // Mutat. Res. V. 695. № 1–2. P. 46–54. https://doi.org/10.1016/j.mrgentox.2009.02.015
  98. Terradas M., Martín M., Tusell L., Genescà A., 2009. DNA lesions sequestered in micronuclei induce a local defective-damage response // DNA Repair. V. 8. № 10. P. 1225–1234. https://doi.org/10.1016/j.dnarep.2009.07.004
  99. Tewari S., Khan K., Husain N., et al., 2016. Peripheral blood lymphocytes as in vitro model to evaluate genomic instability caused by low dose radiation // Asian Pac. J. Cancer Prev. V. 17. № 4. P. 1773–1777. https://doi.org/10.7314/apjcp.2016.17.4.1773
  100. Thierens H., Vral A., Morthier R., et al., 2000. Cytogenetic monitoring of hospital workers occupationally exposed to ionizing radiation using the micronucleus centromere assay // Mutagenesis. V. 15. № 3. P. 245–249. https://doi.org/10.1093/mutage/15.3.245
  101. Timoshevskiy V.A., Herdy J.R., Keinath M.C., Smith J.J., 2016. Cellular and molecular features of developmentally programmed genome rearrangement in a vertebrate (sea lamprey: Petromyzon marinus) // PLoS Genet. V. 12. № 6. Art. e1006103. https://doi.org/10.1371/journal.pgen.1006103
  102. Tommerup N., 1984. Idoxuridine induction of micronuclei containing the long or short arms of human chromosome 9 // Cytogenet. Cell Genet. V. 38. № 2. P. 92–98. https://doi.org/10.1159/000132038
  103. Tuck-Muller C.M., Narayan A., Tsien F., et al., 2000. DNA hypomethylation and unusual chromosome instability in cell lines from ICF syndrome patients // Cytogenet. Cell Genet. V. 89. № 1–2. P. 121–128. https://doi.org/10.1159/000015590
  104. Umbreit N.T., Zhang C.Z., Lynch L.D., et al., 2020. Mechanisms generating cancer genome complexity from a single cell division error // Science. V. 368. № 6488. Art. eaba0712. https://doi.org/10.1126/science.aba0712
  105. Utani K., Okamoto A., Shimizu N., 2011. Generation of micronuclei during interphase by coupling between cytoplasmic membrane blebbing and nuclear budding // PloS One. V. 6. № 11. Art. e27233.
  106. Walker J.A., Boreham D.R., Unrau P., Duncan A.M., 1996. Chromosome content and ultrastructure of radiation-induced micronuclei // Mutagenesis. V. 11. № 5. P. 419–424. https://doi.org/10.1093/mutage/11.5.419
  107. Warecki B., Ling X., Bast I., Sullivan W., 2020. ESCRT-III-mediated membrane fusion drives chromosome fragments through nuclear envelope channels // J. Cell Biol. V. 219. № 3. Art. e201905091. https://doi.org/10.1083/jcb.201905091
  108. Zhang C.Z., Spektor A., Cornils H., et al., 2015. Chromothripsis from DNA damage in micronuclei // Nature. V. 522. № 7555. P. 179–184. https://doi.org/10.1038/nature14493
  109. Zhang L., Rothman N., Wang Y., et al., 1998. Increased aneusomy and long arm deletion of chromosomes 5 and 7 in the lymphocytes of Chinese workers exposed to benzene // Carcinogenesis. V. 19. № 11. P. 1955–1961. https://doi.org/10.1093/carcin/19.11.1955

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».