Is chewing efficiency in small herbivorous mammals a function of body size?

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Based on the original data on the fractionation of stomach and excrements contents, the effectiveness of the masticatory apparatus and post-gastric transformation of food particles in representatives of small herbivorous mammals is considered. It was found out that in the group of small animals with a body mass from 20 to 200 g the effectiveness of chewing does not depend on the body size but is due to the specifics of the functioning of the chewing apparatus. Particle reduction in this group is masked by a rapid change in digestion regimes, the intensity of nonspecific or specialized coprophagy, and the development of the fiber separation mechanism in the large intestine, which leads to high variability of results. The influence of body size is realized when larger herbivores with a body mass of up to 3–5 kg (hares) and up to 20 kg (beavers) are introduced into the comparison. In this case the influence of body size on the effectiveness of chewing is clearly manifested. In this interaction between the groups of animals, effects similar to those previously established in a wide comparative series of large herbivores with a body mass of up to 3000 kg were revealed. Thus, chewing can be considered as a function of body size, when comparing animals that differ significantly in body mass. Special attention is paid to the fraction of the finest particles, as containing not only fragments of fibers, but also non-food inclusions.

About the authors

E. I. Naumova

Severtsov Institute of Ecology and Evolution, RAS

Author for correspondence.
Email: einaumova@gmail.com
Russian Federation, Leninsky Pr., 33, Moscow, 119071

T. Y. Chistova

Severtsov Institute of Ecology and Evolution, RAS

Email: einaumova@gmail.com
Russian Federation, Leninsky Pr., 33, Moscow, 119071

G. K. Zharova

Severtsov Institute of Ecology and Evolution, RAS

Email: einaumova@gmail.com
Russian Federation, Leninsky Pr., 33, Moscow, 119071

References

  1. Жарова Г.К., Наумова Е.И., Чистова Т.Ю., Данилкин А.А., 2011. Особенности редукции клетчатковых волокон в пищеварительном тракте диких жвачных // ДАН. Т. 441. № 1. С. 1–4.
  2. Колесников М.П., 2001. Формы кремния в растениях // Успехи биол. химии. Т. 41. С. 301–332.
  3. Наумова Е.И., Жарова Г.К., Чистова Т.Ю., 2007. Исследование продвижения корма по пищеварительному тракту полевок методом многократного введения пластиковых маркеров // Зоол. журн. Т. 86. № 4. С. 503–508.
  4. Наумова Е.И., Жарова Г.К., Чистова Т.Ю., Варшавский А.А., Ивлев Ю.Ф., 2017. Концентрация и размерный состав растительных волокон в пищеварительном тракте мышевидных грызунов // Изв. РАН. Сер. биол. № 5. С. 418–426.
  5. Наумова Е.И., Жарова Г.К., Чистова Т.Ю., Данилкин А.А., 2012. Редукция растительных волокон в пищеварительном тракте лося и благородного оленя // Изв. РАН. Сер. биол. № 5. С. 521–528.
  6. Наумова Е.И., Жарова Г.К., Чистова Т.Ю., Кузнецова Т.А., 2015. Влияние копрофагии на размерный состав растительных волокон в пищеварительном тракте зайцев (Lepus europaeus и L. timidus, Lagomorpha, Leporidae) // Изв. РАН. Сер. биол. № 5. С. 503–508.
  7. Наумова Е.И., Чистова Т.Ю., Варшавский А.А., Жарова Г.К., 2021. Функциональная диверсификация морфологически сходных органов пищеварительного тракта у представителей Muroidea // Изв. РАН. Сер. биол. № 3. С. 270–279.
  8. Пшенников А.Е., Алексеев В.Г., Корякин И.И., Гнутов Д.Ю., 1988. Копрофагия и ее ритмика у зайца-беляка (Lepus timidus) в Центральной Якутии // Зоол. журн. Т. 67. № 9. С. 1357–1362.
  9. Пшенников А.Е., Борисов З.З., Васильев И.С., 1990. Копрофагия у северной пищухи (Ochotona hyperborea) в Якутии // Зоол. журн. Т. 69. № 12. С. 106–114.
  10. Archer D., Sanson G., 2002. Form and function of the selenodont molar in southern African ruminants in relation to their feeding habits // J. Zool. Lond. V. 257. P. 13–26.
  11. Bjorndal K.A., Bolten A.B., Moore J.E., 1990. Digestive fermentation in herbivores: Effect of food particles size // Physiol. Zool. V. 63. P. 710–721.
  12. Bjornhag G., Snipes R.L., 1999. Colonic separation mechanism in lagomorph and rodent species — a comparison // Zoosyst. Evol. V. 75. P. 275–281.
  13. Bowman J.G.P., Firkins J.L., 1993. Effects of forage species and particle size on bacterial cellulolytic activity and colonization in situ // J. Anim. Sci. V. 71. P. 1623–1633.
  14. Clauss M., Hummel J., 2005. The digestive performance of mammalian herbivores: Why big may not be that much better // Mammal Rev. V. 35. № 2. P. 174–187.
  15. Clauss M., Lechner-Doll M., Streich W.J., 2002. Faecal particle size distribution in captive wild ruminants: An approach to the browser/grazer-dichotomy from the other end // Oecologia. V. 131. P. 343–349.
  16. Clauss M., Schwarm A., Ortmann S., Streich W.J., Hummel J., 2007. A case of non-scaling in mammalian physiology? Body size, digestive capacity, food intake, and ingesta passage in mammalian herbivores // Comp. Biochem. Physiol. A. V. 148. № 2. P. 249–265.
  17. Clauss M., Steuer P., Erlinghagen-Luckerath K., Kaandorp J., Fritz J., et al., 2015. Faecal particle size: Digestive physiology meets herbivore diversity // Comp. Biochem. Physiol. V. 179. P. 182–191.
  18. Cork S.J., Hume I.D., Faichney G.J., 1999. Digestive strategies of nonruminant herbivores: The role of the hindgut // Nutritional Ecology of Herbivores / Eds Jung H.J.G., Fahey G.C. Savoy: American Society of Animal Science. P. 210–260.
  19. Demment M.W., Van Soest P.J., 1985. A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores // Am. Nat. V. 125. № 5. P. 641–672.
  20. Foley W.J., Cork S.J., 1992. Use of fibrous diets by small herbivores: How far can the rules be ‘bent’? // Trends Ecol. Evol. V. 7. P. 159–162.
  21. Fortelius M., 1985. Ungulate cheek teeth: developmental, functional, and evolutionary interrelations // Acta Zool. Fenn. V. 180. P. 1–76.
  22. Fritz J., Hummel J., Kienzle E., Arnold C., Nunn C., Clauss M., 2009. Comparative chewing efficiency in mammalian herbivores // Oikos. V. 118. P. 1623–1632.
  23. Fritz J., Hummel J., Kienzle E., Streich W.J., Clauss M., 2010. To chew or not to chew: Faecal particle size in herbivores reptiles and mammals // J. Exp. Zool. A. V. 313. P. 79–586.
  24. Fritz J., Streich W.J., Schwarm A., Clauss M., 2012. Condensing results of wet sieving analyses into a single data: A comparison of methods for particle size description // J. Anim. Physiol. Nutr. V. 96. P. 783–797.
  25. Hagen K.B., Muller D.W.H., Ortmann S., Kreuzerd M., Clauss M., 2018. Digesta kinetics in two arvicoline rodents, the field vole (Microtus agrestis) and the lemming (Lagurus lagurus) // Mamm. Biol. V. 89. P. 71–78.
  26. Hummel J., Clauss M., Sudekum K.-H., 2020. Aspects of food comminution in ungulates and their consequences for energy budget // Mammalian Teeth — Form and Function / Eds Martin T., Koenigswald W. Munich: Dr. Friedrich Pfeil. P. 87–101.
  27. Hummel J., Fritz J., Kienzle E., Medici E.P., Lang S., et al., 2008. Differences in fecal particle size between free-ranging and captive individuals of two browser species // Zoo Biol. V. 27. P. 70–77.
  28. Illius A.W., Gordon I.J., 1992. Modelling the nutritional ecology of ungulate herbivores: Evolution of body size and competitive interaction // Oecologia. V. 89. P. 428–434.
  29. Jalali A.R., Norgaard P., Weisbjerg M.R., Nielsen M.O., 2012. Effect of forage quality on intake, chewing activity, faecal particle size distribution, and digestibility of neutral detergent fibre in sheep, goats, and llamas // Small Rumin. Res. V. 103. P. 143–151.
  30. Jalali A.R., Weisbjerg M.R., Nadeau E., Randby A.T., Rustas B.O., et al., 2015. Effects of forage type, animal characteristics and feed intake on faecal particle size in goat, sheep, llama and cattle // Anim. Feed Sci. Technol. V. 208. P. 53–65.
  31. Kljak K., Heinrichs B.S., Heinrichs A.J., 2019. Fecal particle dry matter and fiber distribution of eifers fed ad libitum and restricted with low and high forage quality // J. Dairy Sci. V. 102. P. 4694–4703.
  32. Logan M., 2003. Effect of tooth wear on the rumination-like behavior, or merycism, of free-ranging koalas (Phascolarctos cinereus) // J. Mammal. V. 84. P. 897–902.
  33. Madsen H., 1939. Does the rabbit chew the cud? // Nature. V. 143. P. 981–982.
  34. McLeod M.N., Minson D.J., 1988. Large particle breakdown by cattle eating ryegrass and alfalfa // J. Anim. Sci. V. 66. P. 992–999.
  35. Murphy M.R., Nicoletti J.M., 1984. Potential reduction of forage and rumen digesta particle size by microbial action // J. Dairy Sci. V. 67. P. 1221–1226.
  36. Naumova E.I., Chistova T.Yu., Zharova G.K., Kam M., Khokhlova I.S., et al., 2019. Energy requirements, digestive tract compartments and body mass in six gerbilline rodents of the Negev Desert // Zoology. V. 137. P. 1–8.
  37. Naumova E.I., Chistova T.Yu., Zharova G.K., Kam M., Khokhlova I.S., et al., 2021. Particle size reduction along the digestive tract of fat sand rats (Psammomys obesus) fed four chenopods // J. Comp. Physiol. B. V. 191. P. 831–841.
  38. Nygren K., Hofmann R.R., 1990. Seasonal variations of food particle size in moose // Alces. V. 26. P. 44–50.
  39. Nygren K.F.A., Lechner-Doll M., Hofmann R.R., 2001. Inluence of papillae on post-ruminal regulation of ingesta passage in moose (Alces alces L.) // J. Zool. (Lond). V. 254. P. 375–380.
  40. Okamoto M., 1997. Comparison of particle size in the feces of various herbivores // J. Rakuno Gakuen Univ. V. 22. P. 151–153.
  41. Palgi N., Taleisnik H., Pinshow B., 2008. Elimination of oxalate by fat sand rats (Psammomys obesus): Wild and laboratory-bred animals compared // Comp. Biochem. Physiol. A. V. 149. P. 197–202.
  42. Palgi N., Vatnick I., Pinshow B., 2005. Oxalate, calcium and ash intake and excretion balances in fat sand rats (Psammomys obesus) feeding on two diferent diets // Comp. Biochem. Physiol. V. 141. P. 48–53.
  43. Pei Y.-X., Wang D.-H., Hume I., 2001. Effect of dietary fibre on digesta passage, nutrient digestibility and gastrointestinal morphology in the granivorous Mongolian gerbil (Meriones unguiculates) // Physiol. Biochem. Zool. V. 74. № 5. P. 742–749.
  44. Pérez-Barberìa F.J., Gordon I.J., 1998. Factors affecting food comminution during chewing in ruminants: A review // Biol. J. Linn. Soc. V. 63. P. 233–256.
  45. Poppi D.P., Norton B.W., Minson D.J., Hendricksen R.E., 1980. The validity of the critical size theory for particles leaving the rumen // J. Agric. Sci. V. 94. P. 275–280.
  46. Renecker L.A., Hudson R.J., 1990. Digestive kinetics of moose, wapiti and cattle // Anim. Prod. V. 50. P. 51–61.
  47. Shipley L.A., Gross J.E., Spalinger D.E., Hobbs N.T., Wunder B.A., 1994. The scaling of intake rate in mammalian herbivores // Am. Nat. V. 143. P. 1055–1082.
  48. Spalinger D.E., Robbins C.T., 1992. The dynamics of particle low in the rumen of mule deer (Odocoileus hemionus hemionus) and elk (Cervus elaphus nelsoni) // Physiol. Zool. V. 65. P. 379–402.
  49. Streeter Ch.L., 1969. A review of techniques used to estimate the in vivo digestibility of grazed forage // J. Anim. Sci. V. 29. № 5. P. 757–768.
  50. Taylor E.L., 1941. Pseudo-rumination in the rabbit // Proc. Zool. Soc. Lond. V. 110. P. 159–163.
  51. Udén P., 1992. The influence of leaf and stem particle size in vitro and of sample size in sacco on neutral detergent fibre fermentation kinetics // Anim. Feed Sci. Technol. V. 37. P. 85–97.
  52. Udén P., Van Soest P.J., 1982. The determination of digesta particle size in some herbivores // Anim. Feed Sci. Technol. V. 7. P. 35–44.
  53. Van Soest P.J., Jones L.H.P., 1968. Effect of silica in forages upon digestibility // J. Dairy Sci. V. 51. № 10. P. 1644–1648.

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies