Impact of litter burning on alpine Festuca varia grasslands of the Northwestern Caucasus

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Fires play an important role in structure and function of terrestrial ecosystems, but their long-term impact on the composition and structure of plant communities in humid high mountain regions remains almost not studied. At the most dry alpine grasslands, dominated by a dense-tussock grass Festuca varia, with substantial accumulation of non-decomposed litter, the 23-years long experiment with regular (every two years) litter burning was established. The composition of plant community changed significantly. The mortmass (mass of litter), aboveground vascular plant biomass and relative abundance of dominants decreased substantially. In aboveground biomass the proportion of grasses decreased and that of forbs increased. The shoot numbers of Anthemis cretica, Campanula collina, Deschampsia flexuosa, Festuca ovina, Nardus stricta, and Veronica gentianoides increased after burning. Two-fold increase of alpha-diversity of vascular plants was observed on plots with burning treatment, it was twice as high as initial value, and was significantly higher than the values in the control plots. Long-term burning did not substantially change mean P, Ca and Mg content in the biomass of the most of studied species, only K content decreased in some species, while Mg content increased in Festuca varia and Nardus stricta. The increase of P and Mg content in the mortmass was observed. During long-term burning, weak soil acidification and the decrease of Ca content, as well as strong decrease of nitrogen content and the intensity of nitrogen transformation processes were observed. Generally, the observed patterns were similar to those in other studied herb communities, however, the decrease of K content during the regular burning was not reported earlier.

Авторлар туралы

V. Onipchenko

Lomonosov Moscow State University; Aliev Karachai-Cherkessian State University; Teberda National Park

Хат алмасуға жауапты Автор.
Email: vonipchenko@mail.ru
Russia, 119234 , Moscow, Leninskie Gory, 1/12; Russia, 369202, Karachaevsk, Lenina, 29; Russia, 369210, Teberda, Badukskiy, 1

F. Bostanova

Aliev Karachai-Cherkessian State University

Email: vonipchenko@mail.ru
Russia, 369202, Karachaevsk, Lenina, 29

O. Tokareva

Institute of Geography, RAS

Email: vonipchenko@mail.ru
Russia, 119017, Moscow, Staromonetny, 29

M. Makarov

Lomonosov Moscow State University

Email: vonipchenko@mail.ru
Russia, 119234 , Moscow, Leninskie Gory, 1/12

T. Elumeeva

Lomonosov Moscow State University

Email: vonipchenko@mail.ru
Russia, 119234 , Moscow, Leninskie Gory, 1/12

A. Akhmetzhanova

Lomonosov Moscow State University

Email: vonipchenko@mail.ru
Russia, 119234 , Moscow, Leninskie Gory, 1/12

D. Tekeev

Teberda National Park

Email: vonipchenko@mail.ru
Russia, 369210, Teberda, Badukskiy, 1

T. Malysheva

Lomonosov Moscow State University

Email: vonipchenko@mail.ru
Russia, 119234 , Moscow, Leninskie Gory, 1/12

M. Kadulin

Lomonosov Moscow State University

Email: vonipchenko@mail.ru
Russia, 119234 , Moscow, Leninskie Gory, 1/12

Әдебиет тізімі

  1. Бахтиярова О.Н., 2018. Методика расчета скорости распространения пожара с учетом влияния скорости ветра и рельефа местности // Науч. и образоват. проблемы гражданской защиты. № 1 (36). С. 62–68.
  2. Буш Е.А., 1940. О результатах научных работ Юго-Осетинского горно-лугового стационара БИН АН СССР // Сов. ботаника. № 2. С. 11–29.
  3. Габбасова И.М., Гарипов Т.Т., Сулейманов Р.Р., Комиссаров М.А., Хабиров И.К. и др., 2019. Влияние низовых пожаров на свойства и эрозию лесных почв Южного Урала (Башкирский государственный природный заповедник) // Почвоведение. № 4. С. 412–421.
  4. Гогина Е.Е., 1961. К биоморфологии Festuca varia Haenke // Бот. журн. Т. 46. № 6. С. 824–841.
  5. Елумеева Т.Г., 2004. Влияние удаления доминирующих видов Festuca varia Haenke и Nargus stricta L. на состав пестроовсяниценого луга // Комплексные исследования альпийских экосистем Тебердинского заповедника / Тр. Теберд. гос. биосферного заповедника. Вып. 21. М.: б.и. С. 55–61.
  6. Елумеева Т.Г., Онипченко В.Г., 2009. Пирогенная динамика высокогорного пестроовсяницевого луга Тебердинского заповедника: многолетний эксперимент с выжиганием ветоши // Бюл. МОИП. Отд. биол. Т. 114. № 5. С. 15–20.
  7. Кандалова Г.Т., 2009. Степи Хакасии: трансформация, восстановление, перспективы использования. Новосибирск: СО РАСХН. 163 с.
  8. Онипченко В.Г., 1990. Фитомасса альпийских сообществ северо-западного Кавказа // Бюл. МОИП. Отд. биол. Т. 95. № 6. С. 52–62.
  9. Онипченко В.Г., Зернов А.С., 2022. Сосудистые растения Тебердинского национального парка (аннотированный список видов). М.: Изд. Комиссии РАН по сохранению биологического разнообразия и ИПЭЭ РАН. 177 с.
  10. Семенова-Тян-Шанская А.М., 1948. Корневые системы растений субальпийских лугов Юго-Осетии // Тр. БИН АН СССР. Сер. 3. Геоботаника. Вып. 5. С. 89–121.
  11. Сулейманова Г.Ф., 2012. Особенности восстановления после пожара популяций пиона тонколистного (Paeonia tenuifolia L.) в национальном парке “Хвалынский” // Раритеты флоры Волжского бассейна. Тез. докл. II Росс. науч. конф. г. Тольятти, 11–13 сентября 2012 г. Тольятти: “Кассандра”. С. 241–249.
  12. Уфимцев В.И., Куприянов О.А., Стрельникова Т.О., 2013. Влияние пожаров на продуктивность лесных лугов Караканского хребта // Вестн. КемГУ. Т. 1. № 4 (56). С. 8–12.
  13. Федюнькин Д.Ф., 1953. Влияние мертвых растительных остатков и степных пожаров на развитие растительности лесостепного Зауралья // Изв. Естеств.-науч. ин-та при Молотовском гос. ун-те им. А.М. Горького. Т. 13. Вып. 7. С. 621–639.
  14. Anderson T.M., Ritchie M.E., Mayemba E., Eby S., Grace J.B., McNaughton S.J., 2007a. Forage nutritive quality in the Serengeti ecosystem: The roles of fire and herbivory // Am. Nat. V. 170. № 3. P. 343–357.
  15. Anderson T.M., Ritchie M.E., McNaughton S.J., 2007b. Rainfall and soils modify plant community response to grazing in Serengeti National Park // Ecology. V. 88. № 5. P. 1191–1201.
  16. Beck E., Scheibe R., Schulze E.-D., 1986. Recovery from fire: Observations in the alpine vegetation of western Mt. Kilimanjaro (Tanzania) // Phytocoenologia. V. 14. № 1. P. 55–77.
  17. Bond W.J., 2016. Ancient grasslands at risk: Highly biodiverse tropical grasslands are at risk from forest-planting efforts // Science. V. 351. № 6269. P. 120–122.
  18. Bond W.J., Wilgen B.W., van, 1996. Fire and Plants. L.: Chapman & Hall. 253 p.
  19. Bond W.J., Woodward F.I., Midgley G.F., 2005. The global distribution of ecosystems in a world without fire // New Phytol. V. 165. № 2. P. 525–538.
  20. Brookes P.C., Landman A., Pruden G., Jenkinson D.S., 1985. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil // Soil Biol. Biochem. V. 17. № 6. P. 837–842.
  21. Butler O.M., Elser J.J., Lewis T., Mackey B., Chen C., 2018. The phosphorus-rich signature of fire in the soil-plant system: A global meta-analysis // Ecol. Lett. V. 21. № 3. P. 335–344.
  22. Butler O.M., Lewis T., Rashti M.R., Maunsell S.C., Elser J.J., Chen C., 2019. The stoichiometric legacy of fire regime regulates the roles of micro-organisms and invertebrates in decomposition // Ecology. V. 100. № 7. Art. e02732. https://doi.org/10.1002/ecy.2732
  23. Camac J.S., Williams R.J., Wahren C.-H., Hoffmann A.A., Vesk P.A., 2017. Climatic warning strengthens a positive feedback between alpine shrubs and fire // Global Change Biol. V. 23. № 8. P. 3249–3258.
  24. Collins S.L., Calabrese L.B., 2012. Effects of fire, grazing and topographic variation on vegetation structure in tallgrass prairie // J. Veg. Sci. V. 23. № 3. P. 563–575.
  25. Colombaroli D., Henne P.D., Kaltenrieder P., Gobet E., Tinner W., 2010. Species responses to fire, climate, and human impact at tree line in the Alps as evidenced by paleo-environmental records and a dynamic simulation model // J. Ecol. V. 98. № 6. P. 1346–1357.
  26. Dai W., Peng B., Liu J., Wang C., Wang X. et al., 2021. Four years of litter input manipulation changes soil microbial characteristics in a temperate mixed forest // Biogeochemistry. V. 154. № 2. P. 371–383.
  27. Deng B., Zheng L., Ma Y., Zhang L., Liu X. et al., 2020. Effects of mixing biochar on soil N2O, CO2, and CH4 emissions after prescribed fire in alpine meadows of Wugong Mountain, China // J. Soil Sediments. V. 20. № 8. P. 3062–3072.
  28. Dorich R.A., Nelson D.W., 1984. Evaluation of manual cadmium reduction methods for determination of nitrate in potassium chloride extracts of soils // Soil Sci. Soc. Am. J. V. 48. № 1. P. 72–75.
  29. Feurdean A., Vasiliev I., 2019. The contribution of fire to the late Miocene spread of grasslands in eastern Eurasia (Black Sea region) // Sci. Rep. V. 9. Art. 6750. https://doi.org/10.1038/s41598-019-43094-w
  30. Gibson C.M., Turetsky M.R., Cottenie K., Kane E.S., Houle G., Kasischke E.S., 2016. Variation in plant community composition and vegetation carbon pools a decade following a severe fire season in interior Alaska // J. Veg. Sci. V. 27. № 6. P. 1187–1197.
  31. Goodridge B.M., Hanan E.J., Aquilera R., Wetherley E.B., Chen Y.-J. et al., 2018. Retention of nitrogen following wildfire in a chaparral ecosystem // Ecosystems. V. 21. № 8. P. 1608–1622.
  32. Gullap M.K., Erkovan S., Erkovan H.I., Koc A., 2018. Effects of fire on litter, forage dry matter production, and forage quality in steppe vegetation of Eastern Anatolia, Turkey // J. Agric. Sci. Technol. V. 20. № 1. P. 61–70.
  33. Hannusch H.J., Rogers W.E., Lodge A.G., Starns H.D., Tolleson D.R., 2020. Semi-arid savanna herbaceous production and diversity responses to interactive effects of droght, nitrogen deposition, and fire // J. Veg. Sci. V. 31. № 2. P. 255–265.
  34. Higuera P.E., Chipman M.L., Barnes J.L., Urban M.A., Hu F.S., 2011. Variability of tundra fire regimes in Arctic Alaska: Millennial-scale patterns and ecological implications // Ecol. Appl. V. 21. № 8. P. 3211–3226.
  35. Hollingsworth T.N., Breen A.L., Hewitt R.E., Mack M.C., 2021. Does fire always accelerate shrub expansion in Arctic tundra? Examining a novel grass-dominated successional trajectory on the Seward Peninsula // Arct. Antarct. Alp. Res. V. 53. № 1. P. 93–109.
  36. Horn K.J., Wilkinson J., White S., Clair S.B.St., 2015. Desert wildfire impacts on plant community function // Plant Ecol. V. 216. № 12. P. 1623–1634.
  37. Huang Y., Wang K., Deng B., Sun X., Zeng D.-H., 2018. Effects of fire and grazing on above-ground biomass and species diversity in recovering grasslands in northeast China // J. Veg. Sci. V. 29. № 4. P. 629–639.
  38. Jones B.M., Kolden C.A., Jandt R., Abatzoglou J.T., Urban F., Arp C.D., 2009. Fire behavior, weather, and burn severity of the 2007 Anaktuvuk River Tundra Fire, North Slope, Alaska // Arct. Antarct. Alp. Res. V. 41. № 3. P. 309–316.
  39. Kandeer E., 1996. Ammonium // Methods in Soil Biology. Berlin; Heidelberg: Springer-Verlag. P. 406–448.
  40. Kitchen D.J., Blair J.M., Callahan M.A.Jr., 2009. Annual fire and mowing alter biomass, depth distribution, and C and N content of roots and soil in tallgrass prairie // Plant Soil. V. 323. № 1–2. P. 235–247.
  41. Leach M.K., Givnish T.J., 1996. Ecological determinants of species loss in remnant prairies // Science. V. 273. P. 1555–1558.
  42. Lee J.T., Tsai S.-M., Wu Y.-J., Lin Y.-S., Chu M.-Y., Lee M.-J., 2021. Root characteristics and water erosion-reducing ability of Alpine silver grass and Yushan cane for alpine grassland soil conservation // Sustainability. V. 13. Art. 7633. P. 1–15.
  43. Lü X.T., Reed S., Hou S.L., Hu Y.Y., Wei H.W. et al., 2017. Temporal variability of foliar nutrients: responses to nitrogen deposition and prescribed fire in a temperate steppe // Biogeochemistry. V. 133. № 3. P. 295–305.
  44. Mack M.C., Bret-Harte M.S., Hollingsworth T.N., Jandt R.R., Schuuur E.A.G. et al., 2011. Carbon loss from an unprecedented Arctic tundra wildfire // Nature. V. 475. Art. 7357. P. 489–492.
  45. Mark A.F., 1994. Effects of burning and grazing on sustainable utilization of upland snow tussock (Chionochloa spp.) rangelands for pastoralism in South Island, New Zealand // Aust. J. Bot. V. 42. № 2. P. 149–161.
  46. McLauchlan K.K., Higuera P.E., Miesel J., Rogers B.M., Schweitzer J. et al., 2020. Fire as a fundamental ecological process: Research advances and frontiers // J. Ecol. V. 108. № 5. P. 2047–2069.
  47. Narita K., Harada K., Saito K., Sawada Y., Fukuda M., Tsuyuzaki S., 2015. Vegetation and permafrost thaw depth 10 years after a tundra fire in 2002, Seward Peninsula, Alaska // Arct. Antarct. Alp. Res. V. 47. № 3. P. 547–559.
  48. Onipchenko V.G., Makarov M.I., Maarel E., van der, 2001. Influence of alpine plants on soil nutrient concentrations in a monoculture experiment // Folia Geobot. V. 36. № 3. P. 225–241.
  49. Pate J.S., Dell B., 1984. Economy of mineral nutrients in Sandplain species // Kwongan: Plant Life of the Sandplain. Nedlands: Univ. Western Australia. P. 227–252.
  50. Paudel A., Markwith S.H., Konchar K., Shrestha M., Ghimire S.K., 2020. Anthropogenic fire, vegetation structure and ethnobotanical uses in an alpine shrubland of Nepal’s Himalaya // Int. J. Wildland Fire. V. 29. № 3. P. 201–214.
  51. Pausas J.G., Keeley J.E., Schwilk D.W., 2017. Flammability as an ecological and evolutionary driver // J. Ecol. V. 105. № 2. P. 289–297.
  52. Peet K.R., 1992. Community structure and ecosystem function // Plant Succession: Theory and Prediction. L.: Chapman and Hall. P. 103–151.
  53. Peet R.K., Glenn-Lewin D.C., Wolf J.W., 1983. Prediction of man’s impact on plant species diversity // Man’s Impact on Vegetation. Hague: Junk. P. 41–54.
  54. Pellegrini A.F.A., Harder J., Georgiou K., Hemes K.S., Malhotra A. et al., 2022. Fire effects on the persistence of soil organic matter and long-term carbon storage // Nat. Geosci. V. 15. P. 5–13.
  55. Pellegrini A.F.A., Hobbie S.E., Reich P.B., Jumpponen A., Brookshire E.N.J. et al., 2020. Repeated fire shifts carbon and nitrogen cycling by changing plant inputs and soil decomposition across ecosystems // Ecol. Monogr. V. 90. № 4. Art. e01409. https://doi.org/10.1002/ecm.1409
  56. Pinheiro J., Bates D., DebRoy S., Sarkar D., R Core Team, 2016. nlme: Linear and nonlinear mixed effects models. R package version 3.1-128. http://CRAN.R-project.org/package=nlme
  57. Potthast K., Meyer S., Crecelius A.C., Schubert U.S., Tischer A., Michalzik B., 2017. Land-use and fire drive temporal patterns of soil solution chemistry and nutrient fluxes // Sci. Total Environ. V. 605–606. P. 514–526.
  58. Ratajczak Z., Churchill A.C., Ladwig L.M., Taylor J.H., Collins S.L., 2019. The combined effects of an extreme heatwave and wildfire on tallgrass prairie vegetation // J. Veg. Sci. V. 30. № 4. P. 687–697.
  59. Reinhart K.O., Dangi S.R., Vermeire L.T., 2016. The effect of fire intensity, nutrients, soil microbes, and spatial distance on grassland productivity // Plant Soil. V. 409. № 1–2. P. 203–216.
  60. Ryser P., Langenauer R., Gigon A., 1995. Species richness and vegetation structure in a limestone grassland after 15 years management with six biomass removal regimes // Folia Geobot. Phytotax. V. 30. № 2. P. 157–167.
  61. Schaller J., Tischer A., Struyf E., Bremen M., Belmonte D.U., Potthast K., 2015. Fire enhances phosphorus availability in topsoils depending on binding properties // Ecology. V. 96. № 6. P. 1598–1606.
  62. Schulze E.-D., Beck E., Müller-Hohenstein K., 2005. Plant Ecology. Berlin: Springer. 702 p.
  63. Suazo M.M., Collins S.L., Parmenter R.R., Muldavin E., 2018. Montane valley grasslands are highly resistant to summer wildfire // J. Veg. Sci. V. 29. № 6. P. 1017–1028.
  64. Valko O., Torok P., Deak B., Tothmeresz B., 2014. Review: Prospects and limitation of prescribed burning as a management tool in European grasslands // Basic Appl. Ecol. V. 15. № 1. P. 26–33.
  65. Vance E.D., Brookes P.C., Jenkinson D.S., 1987. An extraction method for measuring soil microbial biomass C // Soil Biol. Biochem. V. 19. № 6. P. 703–707.
  66. Wang G., Li J., Ravi S., Dukes D., Gonzales H.B., Sankey J.B., 2019. Post-fire redistribution of soil carbon and nitrogen at a grassland-shrubland ecotone // Ecosystems. V. 22. № 1. P. 174–188.
  67. Williams R.J., Wahren C.-H., Tolsma A.D., Sanecki G.M., Papst W.A. et al., 2008. Large fire in Australian alpine landscapes: Their part in the historical fire regime and their impacts on alpine biodiversity // Int. J. Wildland Fire. V. 17. № 6. P. 793–808.
  68. Wolf J.W., Peet R.K., 1980. Production and diversity in southeastern coastal plain savannas // Bull. Ecol. Soc. Amer. V. 61. № 2. P. 77.
  69. Wragg P.D., Mielke T., Tilman D., 2018. Forbs, grasses, and grassland fire behaviour // J. Ecol. V. 106. № 5. P. 1983–2001.
  70. Yuan Z.Y., Chen H.Y.H., 2012. Fine root dynamics with stand development in the boreal forest // Funct. Ecol. V. 26. № 4. P. 991–998.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (125KB)
3.

Жүктеу (357KB)

© В.Г. Онипченко, Ф.С. Бостанова, О.А. Токарева, М.И. Макаров, Т.Г. Елумеева, А.А. Ахметжанова, Д.К. Текеев, Т.И. Малышева, М.С. Кадулин, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>