Evolution of viruses in immunized populations of vertebrates

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Scientists have described thousands of species of viruses, many of which are pathogens of vertebrates. Given that vertebrates have their highly sophisticated adaptive immune systems capable of memorizing pathogens, interaction with such systems should theoretically be one of the most important factors influencing the evolution of viruses. The review focuses on how acquired immunity (infection-induced and vaccine-induced) affects the most important medical characteristics of viral pathogens – transmissibility, infectivity, and virulence. Both known real examples of the evolution of viruses in immunized populations, as well as theoretical articles and the results of mathematical modeling, are considered. Special attention is paid to the SARS-CoV-2 pandemic. Methodological recommendations are given for creating vaccines and conducting vaccination campaigns in the light of the raised evolutionary issues.

作者简介

P. Panchenko

Lomonosov Moscow State University, Biological Faculty, Department of Biological Evolution

编辑信件的主要联系方式.
Email: 15Panha@rambler.ru
Russia, 119991, Moscow, Leninskie Gory, 1, Bldg. 12

参考

  1. André J.-B., Gandon S., 2006. Vaccination, within-host dynamics, and virulence evolution // Evolution. V. 60. P. 13–23. https://doi.org/10.1111/j.0014-3820.2006.tb01077.x
  2. Andreano E., Piccini G., Licastro D., Casalino L., Johnson N.V., et al., 2021. SARS-CoV-2 escape from a highly neutralizing COVID-19 convalescent plasma // Proc. Natl Acad. Sci. V. 118. № 36. https://doi.org/10.1073/pnas.2103154118
  3. Antoulas A.C., 2004. Approximation of large-scale dynamical systems: An overview // IFAC Proc. Volumes. V. 37. № 11. P. 19–28. https://doi.org/10.1016/s1474-6670(17)31584-7
  4. Arora S., Grover V., Saluja P., Algarni Y.A., Saquib S.A., et al., 2022. Literature review of Omicron: A grim reality amidst COVID-19 // Microorganisms. V. 10. № 2. https://doi.org/10.3390/microorganisms10020451
  5. Aviagen, 2017. Marek’s Disease Virus. https://en.aviagen.com/assets/Tech_Center/Broiler_Breeder_Tech_Articles/English/MareksDiseaseVirus-2017-EN.pdf
  6. Butt A.A., Dargham S.R., Loka S., Shaik R.M., Chemaitelly H., et al., 2022. COVID-19 disease severity in children infected with the Omicron variant // Clin. Infect. Dis. V. 75. № 1. P. e361–e367. https://doi.org/10.1093/cid/ciac275
  7. Cecchinato M., Catelli E., Lupini C., Ricchizzi E., Clubbe J., et al., 2010. Avian metapneumovirus (AMPV) attachment protein involvement in probable virus evolution concurrent with mass live vaccine introduction // Vet. Microbiol. V. 146. № 1–2. P. 24–34. https://doi.org/10.1016/j.vetmic.2010.04.014
  8. Cele S., Karim F., Lustig G., San J.E., Hermanus T., et al., 2022. SARS-CoV-2 prolonged infection during advanced HIV disease evolves extensive immune escape // Cell Host Microbe. V. 30. № 2. P. 154–162. https://doi.org/10.1016/j.chom.2022.01.005
  9. Chinesta F., Huerta A., Rozza G., Wilcox K., 2017. Model reduction methods // Encyclopedia of Computational Mechanics, Second Edition / Eds Stein E., Borst R., Hughes T.J.R. Hoboken: Wiley. https://doi.org/10.1002/9781119176817.ecm2110
  10. Cloete J., Kruger A., Masha M., Du Plessis N.M., Mawela D., et al., 2022. Paediatric hospitalisations due to COVID-19 during the first SARS-CoV-2 omicron (B.1.1.529) variant wave in South Africa: A multicentre observational study // Lancet Child Adolesc. Health. V. 6. № 5. P. 294–302. https://doi.org/10.1016/S2352-4642(22)00027-X
  11. Coyne K.P., Reed F.C., Porter C.J., Dawson S., Gaskell R.M., Radford A.D., 2006. Recombination of Feline calicivirus within an endemically infected cat colony // J. Gen. Virol. V. 87. № 4. P. 921–926. https://doi.org/10.1099/vir.0.81537-0
  12. Crépey P., Noël H., Alizon S., 2022. Challenges for mathematical epidemiological modelling // Anaesth. Crit. Care Pain Med. V. 41. № 2. https://doi.org/10.1016/j.accpm.2022.101053
  13. Davison F., Nair V., 2004. Marek’s Disease: An Evolving Problem. Amsterdam: Elsevier. 208 p.
  14. Day T., 2001. Parasite transmission modes and the evolution of virulence // Evolution. V. 55. P. 2389–2400. https://doi.org/10.1111/j.0014-3820.2001.tb00754.x
  15. Dimmock N.J., Easton A.J., Leppard K.N., 2007. Introduction to Modern Virology. 6th ed. Malden: Blackwell Publishing. 516 p.
  16. Du X., Tang H., Gao L., Wu Z., Meng F., et al., 2022. Omicron adopts a different strategy from Delta and other variants to adapt to host // Signal Transduct. Target Ther. V. 7. № 1. https://doi.org/10.1038/s41392-022-00903-5
  17. Egeren D., van, Novokhodko A., Stoddard M., Tran U., Zetter B., et al., 2021. Risk of rapid evolutionary escape from biomedical interventions targeting SARS-CoV-2 spike protein // PLoS One. V. 16. № 4. https://doi.org/10.1371/journal.pone.0250780
  18. El-Diwany R., Cohen V.J., Mankowski M.C., Wasilewski L.N., Brady J.K., et al., 2017. Extra-epitopic hepatitis C virus polymorphisms confer resistance to broadly neutralizing antibodies by modulating binding to scavenger receptor B1 // PLoS Pathog. V. 13. № 2. https://doi.org/10.1371/journal.ppat.1006235
  19. Ewald P.W., 1991. Transmission modes and the evolution of virulence // Human Nature. V. 2. P. 1–30. https://doi.org/10.1007/BF02692179
  20. Ewald P.W., 1993. The evolution of virulence // Sci. Am. V. 268. № 4. P. 86–93. http://www.jstor.org/stable/24941444
  21. Franceschi C., Valensin S., Fagnoni F., Barbi C., Bonafè M., 1999. Biomarkers of immunosenescence within an evolutionary perspective: The challenge of heterogeneity and the role of antigenic load // Exp. Gerontol. V. 34. № 8. P. 911–921. https://doi.org/10.1016/S0531-5565(99)00068-6
  22. Franzo G., Tucciarone C., Cecchinato M., Drigo M., 2016. Porcine circovirus type 2 (PCV2) evolution before and after the vaccination introduction: A large scale epidemiological study // Sci. Rep. V. 6. https://doi.org/10.1038/srep39458
  23. Franzo G., Legnardi M., Tucciarone C.M., Drigo M., Martini M., Cecchinato M., 2019. Evolution of infectious bronchitis virus in the field after homologous vaccination introduction // Vet. Res. V. 50. https://doi.org/10.1186/s13567-019-0713-4
  24. Frasca D., Reidy L., Romero M., Diaz A., Cray C., et al., 2022. The majority of SARS-CoV-2-specific antibodies in COVID-19 patients with obesity are autoimmune and not neutralizing // Int. J. Obes. V. 46. P. 427–432. https://doi.org/10.1038/s41366-021-01016-9
  25. Garcia-Beltran W.F., Lam E.C., St Denis K., Nitido A.D., Garcia Z.H., et al., 2021. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity // Cell. V. 184. № 9. P. 2372–2383. https://doi.org/10.1016/j.cell.2021.03.013
  26. Ghosh D., Bernstein J.A., Mersha T.B., 2020. COVID-19 pandemic: The African paradox // J. Global Health. V. 10. № 2. https://doi.org/10.7189/jogh.10.020348
  27. Ginaldi L., Martinis M., de, Monti D., Franceschi C., 2005. Chronic antigenic load and apoptosis in immunosenescence // Trends Immunol. V. 26. № 2. P. 79–84. https://doi.org/10.1016/j.it.2004.11.005
  28. Grabowski F., Kochańczyk M., Lipniacki T., 2022. The spread of SARS-CoV-2 variant Omicron with a doubling time of 2.0-3.3 days can be explained by immune evasion // Viruses. V. 14. № 2. https://doi.org/10.3390/v14020294
  29. Grenfell B.T., Pybus O.G., Gog J.R., Wood J.L.N., Daly J.M., et al., 2004. Unifying the epidemiological and evolutionary dynamics of pathogens // Science. V. 303. № 5656. P. 327–332.
  30. Hie B., Zhong E.D., Berger B., Bryson B., 2021. Learning the language of viral evolution and escape // Science. V. 371. № 6526. P. 284–288. https://doi.org/10.1126/science.abd7331
  31. Hoffman S.A., Costales C., Sahoo M.K., Palanisamy S., Yamamoto F., et al., 2021. SARS-CoV-2 neutralization resistance mutations in patient with HIV/AIDS, California, USA // Emerg. Infect. Dis. V. 27. № 10. P. 2720−2723. https://doi.org/10.3201/eid2710.211461
  32. Hui K.P.Y., Ho J.C.W., Cheung M.C., Ng K.C., Ching R.H.H., et al., 2022. SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo // Nature. V. 603. № 7902. P. 715−720. https://doi.org/10.1038/s41586-022-04479-6
  33. Jackson B., Boni M.F., Bull M.J., Colleran A., Colquhoun R.M., et al., 2021. Generation and transmission of interlineage recombinants in the SARS-CoV-2 pandemic // Cell. V. 184. № 20. P. 5179−5188. https://doi.org/10.1016/j.cell.2021.08.014
  34. Jacobson K.B., Pinsky B.A., Rath M.E.M., Wang H., Miller J.A., et al., 2021. Post-vaccination SARS-CoV-2 infections and incidence of the B.1.427/B.1.429 variant among healthcare personnel at a northern California academic medical center // medRxiv. https://doi.org/10.1101/2021.04.14.21255431
  35. Kemp S.A., Collier D.A., Datir R.P., Ferreira I.A.T.M., Gayed S., et al., 2021. SARS-CoV-2 evolution during treatment of chronic infection // Nature. V. 592. № 7853. P. 277−282. https://doi.org/10.1038/s41586-021-03291-y
  36. Kennedy D.A., Read A.F., 2017. Why does drug resistance readily evolve but vaccine resistance does not? // Proc. Roy. Soc. B. V. 284. № 1851. https://doi.org/10.1098/rspb.2016.2562
  37. Kostoff R.N., Kanduc D., Porter A.L., Shoenfeld Y., Briggs M.B., 2020. COVID-19 Vaccine Safety Considerations. Atlanta: Georgia Institute of Technology. 46 p. http://hdl.handle.net/1853/63710
  38. Lai M.M.C., 1996. Recombination in large RNA viruses: Coronaviruses // Semin. Virol. V. 7. № 6. P. 381−388. https://doi.org/10.1006/smvy.1996.0046
  39. Legnardi M., Tucciarone C.M., Franzo G., Cecchinato M., 2020. Infectious bronchitis virus evolution, diagnosis and control // Vet. Sci. V. 7. № 2. https://doi.org/10.3390/vetsci7020079
  40. Liu J.L., Kung H.J., 2000. Marek’s disease herpesvirus transforming protein MEQ: A c-Jun analogue with an alternative life style // Virus Genes. V. 21. № 1–2. P. 51−64.
  41. Liu Q., Zhou Y.H., Yang Z.Q., 2016. The cytokine storm of severe influenza and development of immunomodulatory therapy // Cell. Mol. Immunol. V. 13. № 1. P. 3–10. https://doi.org/10.1038/cmi.2015.74
  42. Marakasova E., Baranova A., Pirofski L., 2021. MMR vaccine and COVID-19: Measles protein homology may contribute to cross-reactivity or to complement activation protection // mBio. V. 12. № 1. https://doi.org/10.1128/mBio.03447-20
  43. McMillan P., Dexhiemer T., Neubig R.R., Uhal B.D., 2021. COVID-19 – A theory of autoimmunity against ACE-2 explained // Front. Immunol. V. 12. https://doi.org/10.3389/fimmu.2021.582166
  44. Mlcochova P., Kemp S.A., Dhar M.S., Papa G., Meng B., et al., 2021. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion // Nature. V. 599. P. 114–119. https://doi.org/10.1038/s41586-021-03944-y
  45. Morán Blanco J.I., Alvarenga Bonilla J.A., Homma S., Suzuki K., Fremont-Smith P., Villar Gómez de las Heras K., 2021. Antihistamines and azithromycin as a treatment for COVID-19 on primary health care – A retrospective observational study in elderly patients // Pulm. Pharmacol. Ther. V. 67. https://doi.org/10.1016/j.pupt.2021.101989
  46. Ossiboff R.J., Sheh A., Shotton J., Pesavento P.A., Parker J.S.L., 2007. Feline caliciviruses (FCVs) isolated from cats with virulent systemic disease possess in vitro phenotypes distinct from those of other FCV isolates // J. Gen. Virol. V. 88. № 2. P. 506−517. https://doi.org/10.1099/vir.0.82488-0
  47. Plans Rubió P., 2012. Is the basic reproductive number (R0) for measles viruses observed in recent outbreaks lower than in the pre-vaccination era? // Euro Surveill. V. 17. № 31. P. 20233. https://doi.org/10.2807/ese.17.31.20233-en
  48. Radford A.D., Dawson S., Coyne K.P., Porter C.J., Gaskell R.M., 2006. The challenge for the next generation of feline calicivirus vaccines // Vet. Microbiol. V. 117. № 1. P. 14–18. https://doi.org/10.1016/j.vetmic.2006.04.004
  49. Radford A.D., Coyne K.P., Dawson S., Porter C.J., Gaskell R.M., 2007. Feline calicivirus // Vet. Res. V. 38. № 2. P. 319−335. https://doi.org/10.1051/vetres:2006056
  50. Ragia G., Manolopoulos V.G., 2020. Inhibition of SARS-CoV-2 entry through the ACE2/TMPRSS2 pathway: A promising approach for uncovering early COVID-19 drug therapies // Eur. J. Clin. Pharmacol. V. 76. P. 1623–1630. https://doi.org/10.1007/s00228-020-02963-4
  51. Read A.F., 2016. Pathogen evolution in a vaccinated world. https://www.youtube.com/watch?v=TeyxhehhEuo
  52. Read A.F., Baigent S.J., Powers C., Kgosana L.B., Blackwell L., et al., 2015. Imperfect vaccination can enhance the transmission of highly virulent pathogens // PLoS Biol. V. 13. № 7. https://doi.org/10.1371/journal.pbio.1002198
  53. Sasaki A., Lion S., Boots M., 2022. Antigenic escape selects for the evolution of higher pathogen transmission and virulence // Nat. Ecol. Evol. V. 6. P. 51–62. https://doi.org/10.1038/s41559-021-01603-z
  54. Scudellari M., 2021. How the coronavirus infects cells – and why Delta is so dangerous // Nature News Feature. https://www.nature.com/articles/d41586-021-02039-y
  55. Shamblin C.E., Greene N., Arumugaswami V., Dienglewicz R.L., Parcells M.S., 2004. Comparative analysis of Marek’s disease virus (MDV) glycoprotein-, lytic antigen pp38- and transformation antigen Meq-encoding genes: Association of meq mutations with MDVs of high virulence // Vet. Microbiol. V. 102. № 3–4. P. 147−167. https://doi.org/10.1016/j.vetmic.2004.06.007
  56. Sharif-Askari N.S., Sharif-Askari F.S., Alabed M., Temsah M., Heialy S.A., et al., 2020. Airways expression of SARS-CoV-2 receptor, ACE2, and TMPRSS2 is lower in children than adults and increases with smoking and COPD // Mol. Ther. Methods Clin. Dev. V. 18. P. 1−6. https://doi.org/10.1016/j.omtm.2020.05.013
  57. Singanayagam A., Hakki S., Dunning J., Madon K.J., Crone M.A., et al., 2022. Community transmission and viral load kinetics of the SARS-CoV-2 delta (B.1.617.2) variant in vaccinated and unvaccinated individuals in the UK: A prospective, longitudinal, cohort study // Lancet Infect. Dis. V. 22. № 2. P. 183−195. https://doi.org/10.1016/S1473-3099(21)00648-4
  58. Sun Y., Lin W., Dong W., Xu J., 2022. Origin and evolutionary analysis of the SARS-CoV-2 Omicron variant // J. Biosaf. Biosecur. V. 4. № 1. P. 33−37. https://doi.org/10.1016/j.jobb.2021.12.001
  59. Suzuki R., Yamasoba D., Kimura I., Wang L., Kishimoto M., et al., 2022. Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant // Nature. V. 603. № 7902. P. 700−705. https://doi.org/10.1038/s41586-022-04462-1
  60. Swiss Policy Research, 2020. https://swprs.org/why-covid-19-is-a-strange-pandemic/
  61. Swiss Policy Research, 2021. https://swprs.org/covid-versus-the-flu-revisited/
  62. Thomine O., Alizon S., Boennec C., Barthelemy M., Sofonea M., 2021. Emerging dynamics from high-resolution spatial numerical epidemics // eLife. V. 10. https://doi.org/10.7554/eLife.71417
  63. VanBlargan L.A., Errico J.M., Halfmann P.J., Zost S.J., Crowe J.E., Jr., et al., 2022. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies // Nat. Med. V. 28. № 3. P. 490−495. https://doi.org/10.1038/s41591-021-01678-y
  64. WHO, 2020. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). https://www.who. int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
  65. Wong J.P., Viswanathan S., Wang M., Sun L.Q., Clark G.C., D’Elia R.V., 2017. Current and future developments in the treatment of virus-induced hypercytokinemia // Future Med. Chem. V. 9. № 2. P. 169–178. https://doi.org/10.4155/fmc-2016-0181
  66. Yuan M., Huang D., Lee C.D., Wu N.C., Jackson A.M., et al., 2021. Structural and functional ramifications of antigenic drift in recent SARS-CoV-2 variants // Science. V. 373. P. 818−823. https://doi.org/0.1126/science.abh1139
  67. Zhang X., Wu S., Wu B., Yang Q., Chen A., et al., 2021. SARS-CoV-2 Omicron strain exhibits potent capabilities for immune evasion and viral entrance // Signal Transduct. Target Ther. V. 6. № 1. https://doi.org/10.1038/s41392-021-00852-5
  68. Zurita-Gutiérrez Y.H., Lion S., 2015. Spatial structure, host heterogeneity and parasite virulence: Implications for vaccine-driven evolution // Ecol. Lett. V. 18. P. 779–789. https://doi.org/10.1111/ele.12455

补充文件

附件文件
动作
1. JATS XML
2.

下载 (277KB)
3.

下载 (209KB)
4.

下载 (546KB)
5.

下载 (324KB)
6.

下载 (536KB)
7.

下载 (309KB)
8.

下载 (203KB)

版权所有 © П.Л. Панченко, 2023

##common.cookie##