Synthesis and structure of silver halide complexes [Ph3PCH=CH2]n[Ag2Br3]n, [Ph3PCH=CH2]n[Ag5Br6]n and [Ph3PCH2CH=CHCH2PPh3][Ag2I4]
- 作者: Shevchenko D.P.1, Zhizhina A.I.1, Efremova A.N.1, Sharutin V.V.1, Sharutina O.K.1
-
隶属关系:
- South Ural State University (National Research University)
- 期: 卷 69, 编号 6 (2024)
- 页面: 822-828
- 栏目: КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ
- URL: https://journals.rcsi.science/0044-457X/article/view/273137
- DOI: https://doi.org/10.31857/S0044457X24060042
- EDN: https://elibrary.ru/XTPMSJ
- ID: 273137
如何引用文章
详细
By the interaction of silver bromide with (2-bromoethyl)- and vinyltriphenylphosphonium bromides, as well as silver iodide with but-2-ene-1,4-diyl-bis(triphenylphosphonium) diiodide in DMSO, haloargentate complexes [Ph3PCH=CH2]n[Ag2Br3]n (I), [Ph3PCH=CH2]n[Ag5Br6]n (II) and [Ph3PCH2CH=CHCH2PPh3][Ag2I4] (III) were synthesized. The obtained products were characterized by IR spectroscopy and X-ray diffraction analysis (CCDC No. 2173339 (I), 2172944 (II), 1985085 (III)). According to X-ray diffraction data, compounds I–III consist of organyltriphenylphosphonium cations with tetrahedrally coordinated phosphorus atoms and the corresponding haloargentate anions of 1D-polymeric (I, II) or non-polymeric (III) structure. The anions I and II are “cross-linked” from tetrahedral {AgBr4} fragments, while anion III – from two trigonal fragments {AgBr3}. In all the resulting complexes, the Ag centers are additionally connected to each other by argentophilic contacts with Ag···Ag distances in the range of 2.8162(12)–3.371(2) Å.
全文:

作者简介
D. Shevchenko
South Ural State University (National Research University)
编辑信件的主要联系方式.
Email: Shepher56@gmail.com
俄罗斯联邦, Chelyabinsk, 454080
A. Zhizhina
South Ural State University (National Research University)
Email: Shepher56@gmail.com
俄罗斯联邦, Chelyabinsk, 454080
A. Efremova
South Ural State University (National Research University)
Email: Shepher56@gmail.com
俄罗斯联邦, Chelyabinsk, 454080
V. Sharutin
South Ural State University (National Research University)
Email: Shepher56@gmail.com
俄罗斯联邦, Chelyabinsk, 454080
O. Sharutina
South Ural State University (National Research University)
Email: Shepher56@gmail.com
俄罗斯联邦, Chelyabinsk, 454080
参考
- Li H.-H., Chen Z.-R., Sun L.-G. et al. // Cryst. Growth Des. 2010. V. 10. № 3. P. 1068. https://doi.org/10.1021/cg900476m
- Zhang Z., Niu Y., Ng S. et al. // J. Coord. Chem. 2011. V. 64. № 10. P. 1683. https://doi.org/10.1080/00958972.2011.579117
- Mishra S., Jeanneau E., Ledoux G. et al. // Inorg. Chem. 2014. V. 53. № 21. P. 11731. https://doi.org/10.1021/ic501963y
- Du H.-J., Zhang W.-L., Wang C.-H. et al. // Inorg. Chem. Commun. 2015. V. 54. P. 45. https://doi.org/10.1016/j.inoche.2015.02.005
- Du H.-J., Zhang W.-L., Wang C.-H. et al. // Dalton Trans. 2016. V. 45. № 6. P. 2624. https://doi.org/10.1039/C5DT04508H
- Wang Y.-K., Zhao L.-M., Fu Y.-Q. et al. // Cryst. Growth Des. 2018. V. 18. № 7. P. 3827. https://doi.org/10.1021/acs.cgd.8b00033
- Wang R.-Y., Zhang X., Yu J.-H. et al. // RSC Adv. 2018. V. 8. № 63. P. 36150. https://doi.org/10.1039/c8ra05760e
- Shen J., Zhang X., Kang X. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. № 20. P. 2488. https://doi.org/10.1002/ejic.201900258
- Zhu Y., Yu T., Hao P. et al. // J. Clust. Sci. 2016. V. 27. № 4. P. 1283. https://doi.org/10.1007/s10876-016-0999-6
- Du. H., Li Y., Xu M. et al. // J. Mol. Struct. 2017. V. 1133. P. 101. https://doi.org/10.1016/j.molstruc.2016.11.092
- Zhang C., Shen J., Guan Q. et al. // Solid State Sci. 2015. V. 46. P. 14. https://doi.org/10.1016/j.solidstatesciences.2015.05.009
- Liu M., Liang Y., Wang C.-H. et al. // J. Clust. Sci. 2015. V. 26. № 5. P. 1723. https://doi.org/10.1007/s10876-015-0870-1
- Yue C.-Y., Lei X.-W., Han Y.-F. et al. // Inorg. Chem. 2016. V. 55. № 23. P. 12193. https://doi.org/10.1021/acs.inorgchem.6b01770
- Shen Y., Zhang L., Li S. et al. // Eur. J. Inorg. Chem. 2018. V. 2018. № 6. P. 826. https://doi.org/10.1002/ejic.201701284
- Xue Z.-Z., Wang A.-N., Wei L. et al. // CrystEngComm. 2021. V. 23. № 7. P. 1588. https://doi.org/10.1039/d0ce01642j
- Lei X.-W., Yue C.-Y., Wu F. et al. // Inorg. Chem. Commun. 2017. V. 77. P. 64. https://doi.org/10.1016/j.inoche.2017.01.010
- Zheng W., Gao Y., Chen N. et al. // Inorg. Chim. Acta. 2020. V. 510. P. 119762. https://doi.org/10.1016/j.ica.2020.119762
- Gao Y., Chen N., Tian Y. et al. // Inorg. Chem. 2021. V. 60. № 6. P. 3761. https://doi.org/10.1021/acs.inorgchem.0c03528
- Folda A., Scalcon V., Ghazzali M. et al. // J. Inorg. Biochem. 2015. V. 153. P. 346. https://doi.org/10.1016/j.jinorgbio.2015.08.030
- Wang. F., Wang Y.-T., Yu H. et al. // Inorg. Chem. 2016. V. 55. № 18. P. 9417. https://doi.org/10.1021/acs.inorgchem.6b01688
- Шевченко Д.П., Ефремов А.Н., Шарутин В.В. и др. // Вестник ЮУрГУ. Сер. Химия. 2022. Т. 14. № 4. С. 79. https://doi.org/10.14529/chem220408
- Liu Y.-F., Lin M., Huang C.-C. et al. // Acta Crystallogr. E: Crystallogr. Commun. 2007. V. E63. № 12. P. m2970. https://doi.org/10.1107/S1600536807048441
- Bernd M.A., Bauer E.B., Oberkofler J. et al. // Dalton Trans. 2020. V. 49. № 40. P. 14106. https://doi.org/10.1039/D0DT02598D
- Шарутин В.В., Шарутина О.К., Сенчурин В.С. и др. // Коорд. химия. 2016. Т. 42. № 2. С. 110. https://doi.org/10.7868/S0132344X16020079
- Qiao Y.-Z., Fu W.-Z., Yue J.-M. et al. // CrystEngComm. 2012. V. 14. № 9. P. 3241. https://doi.org/10.1039/c2ce06687d
- Шарутин В.В., Шарутина О.К., Сенчурин В.С. и др. // Журн. неорган. химии. 2016. Т. 61. № 4. С. 472. https://doi.org/10.7868/S0044457X16040176
- Шарутин В.В., Шарутина О.К., Сенчурин В.С. и др. // Журн. общ. химии. 2016. Т. 86. № 7. С. 1177.
- Шарутин В.В., Шарутина О.К., Сенчурин В.С. и др. // Бутлеровск. сообщ. 2014. Т. 39. № 10. С. 54.
- Wang R.-Y., Zhang X., Huo Q.-S. et al. // RSC Adv. 2017. V. 7. № 31. P. 19073. https://doi.org/10.1039/C6RA27510A
- Li H.-H., Chen Z.-R., Li J.-Q. et al. // Eur. J. Inorg. Chem. 2006. V. 2006. № 12. P. 2447. https://doi.org/10.1002/ejic.200600057
- Брауэр Г., Вайгель Ф., Кюнль Х. и др. Руководство по неорганическому синтезу: В 6-ти томах. Т. 4 / Пер. с нем. Добрыниной Н.А., Мазо Г.Н., Санталовой Н.А., Троянова С.И. М.: Мир, 1985. 447 с.
- Беллами Л. Инфракрасные спектры сложных молекул / Пер. с англ. Акимова В.М. и др. Под ред. Пентина Ю.А. М.: Изд-во иностранной литературы, 1963. 590 с.
- Преч E., Бюльман Ф., Аффольтер К. Определение строения органических соединений. Таблицы спектральных данных / Пер. с англ. Тарасевича Б.Н. М.: Мир, 2006. 440 с.
- Bondi A. // J. Phys. Chem. 1964. V. 68. № 3. P. 441. https://doi.org/10.1021/j100785a001
- Yu T., Shen J., Fu Y. et al. // CrystEngComm. 2014. V. 16. № 24. P. 5280. https://doi.org/10.1039/C3CE42579G
- Mantina M., Chamberlin A.C., Valero R. et al. // J. Phys. Chem. A. 2009. V. 113. № 19. P. 5806. https://doi.org/10.1021/jp8111556
补充文件
