Derivation of a Force Field for Computer Simulations of Multi-Walled Nanotubes Using Genetic Algorithm. I. Tungsten Disulfide

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A technique for constructing force fields based on the use of genetic algorithms is proposed, which is aimed at parameterization of potentials intended for computer simulation of polyatomic nanosystems. To illustrate the proposed approach, a force field has been developed for modeling layered modifications of WS2, including multi-walled nanotubes, the dimensions of which are beyond the capabilities of ab initio methods. When determining the potential parameters, layered polytypes of bulk crystals, monolayers, bilayers, and nanotubes of small diameters were used as calibration systems. The parameterization found was successfully tested on double-walled nanotubes, the structure of which was determined using density functional calculations. The obtained force field was used for the first time to model the structure and stability of achiral multi-walled nanotubes based on WS2. The interwall distances obtained from the simulation are in good agreement with the results of recent measurements of these parameters for existing nanotubes.

作者简介

A. Bandura

Quantum Chemistry Department, Saint-Petersburg State University

Email: a.bandura@spbu.ru
199034, St. Petersburg, Russia

S. Lukyanov

Quantum Chemistry Department, Saint-Petersburg State University

Email: a.bandura@spbu.ru
199034, St. Petersburg, Russia

A. Domnin

Quantum Chemistry Department, Saint-Petersburg State University

Email: a.bandura@spbu.ru
199034, St. Petersburg, Russia

D. Kuruch

Quantum Chemistry Department, Saint-Petersburg State University

Email: a.bandura@spbu.ru
199034, St. Petersburg, Russia

R. Evarestov

Quantum Chemistry Department, Saint-Petersburg State University

编辑信件的主要联系方式.
Email: a.bandura@spbu.ru
199034, St. Petersburg, Russia

参考

  1. Musfeldt J.L., Iwasa Y., Tenne R. // Physics Today. 2020. V. 73. № 8. P. 42. https://doi.org/10.1063/PT.3.4547
  2. Kawai H., Sugahara M., Okada R. et al. // Appl. Phys. Express. 2017. V. 10. № 5. P. 015001. https://doi.org/10.7567/APEX.10.015001
  3. Kim B., Park N., Kim J. // Nat. Commun. 2022. V. 13. P. 3237. https://doi.org/10.1038/s41467-022-31018-8
  4. O’Neal K.R., Cherian J.G., Zak A. et al. // Nano Lett. 2016. V. 16. P. 993. https://doi.org/10.1021/acs.nanolett.5b03996
  5. Sinha S.S., Zak A., Rosentsvieg R. et al. // Small. 2020. V. 16. № 4. P. 1904390. https://doi.org/10.1002/smll.201904390
  6. Nagapriya K.S., Goldbart O., Kaplan-Ashiri I. et al. // Phys. Rev. Lett. 2008. V. 101. P. 195501. https://doi.org/10.1103/PhysRevLett.101.195501
  7. Levi R., Bitton O., Leitus G. et al. // Nano Lett. 2013. V. 13. P. 3736. https://doi.org/10.1021/nl401675k
  8. Sugahara M., Kawai H., Yomogida Y. et al. // Appl. Phys. Express. 2016. V. 9. P. 075001. https://doi.org/10.7567/APEX.9.075001
  9. Qin F., Shi W., Ideue T. et al. // Nat. Commun. 2017. V. 8. P. 14465. https://doi.org/10.1038/ncomms14465
  10. Zhang C.Y., Wang S., Yang L.J. et al. // Appl. Phys. Lett. 2012. V. 100. P. 243101. https://doi.org/10.1063/1.4729144
  11. Zhang Y.J., Onga M., Qin F. et al. // 2D Mater. 2018. V. 5. P. 035002. https://doi.org/10.1088/2053-1583/aab670
  12. Divon Y., Levi R., Garel J. et al. // Nano Lett. 2017. V. 17. № 1. P. 28. https://doi.org/10.1021/acs.nanolett.6b03012
  13. Maharaj D., Bhushan B. // Tribol Lett. 2013. V. 49. № 2. P. 323. https://doi.org/10.1007/s11249-012-0071-0
  14. Reddy C.S., Zak A., Zussman E. // J. Mater. Chem. 2011. V. 21. P. 16086. https://doi. org/https://doi.org/10.1039/C1JM12700D
  15. Zohar E., Baruch S., Shneider M.H. et al. // J. Adhes. Sci. Technol. 2011. V. 25. P. 1603. https://doi.org/10.1163/ 016942410X524138
  16. Otorgust G., Dodiuk H., Kenig S., Tenne R. // Eur. Polym. J. 2017. V. 89. P. 281. https://doi.org/10.1016/j.eurpolymj.2017.02.027
  17. Yadgarov L., Višić B., Abir T. et al. // Phys. Chem. Chem. Phys. 2018. V. 20. P. 20812. https://doi.org/10.1039/c8cp02245c
  18. Rahman Md.A., Yomogida Y., Nagano M. et al. // Jpn. J. Appl. Phys. 2021. V. 60. P. 100902. https://doi.org/10.35848/1347-4065/ac2013
  19. Shen G., Yan Y., Hong K. // Mater. Lett. 2022. V. 319. P. 132303. https://doi.org/10.1016/j.matlet.2022.132303
  20. Sinha S.S., Yadgarov L., Aliev S.B. et al. // J. Phys. Chem. C. 2021. V. 125. P. 6324. https://doi.org/10.1021/acs.jpcc.0c10784
  21. Yomogida Y., Miyata Y., Yanagi K. // Appl. Phys. Express. 2019. V. 12. P. 085001. https://doi.org/10.7567/1882-0786/ab2acb
  22. Bar Sadan M., Houben L., Enyashin A.N. et al. // PNAS. 2008. V. 105. № 41. P. 15643. https://doi.org/10.1073_pnas.0805407105
  23. Deniz H., Qin L.-C. // Chem. Phys. Lett. 2012. V. 552. P. 92. https://doi.org/10.1016/j.cplett.2012.09.041
  24. Chen Y., Deniz H., Qin L.-C. // Nanoscale. 2017. V. 9. P. 7124. https://doi.org/10.1039/c7nr01688c
  25. Krause M., Mücklich A., Zak A. et al. // Phys. Status Solidi B. 2011. V. 248. № 11. P. 2716. https://doi.org/10.1002/pssb.201100076
  26. Seifert G., Terrones H., Terrones M. et al. // Solid State Commun. 2000. V. 114. № 5. P. 245. https://doi.org/10.1016/S0038-1098(00)00047-8
  27. Ghorbani-Asl M., Zibouche N., Wahiduzzaman M. et al. // Sci. Rep. 2013. V. 3. P. 2961. https://doi.org/10.1038/srep02961
  28. Бандура А.В., Куруч Д.Д., Лукьянов С.И., Эварес-тов Р.А. // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1795. https://doi.org/10.31857/S0044457X2260116X
  29. Evarestov R.A., Bandura A.V., Porsev V.V., Kovalenko A.V. // J. Comput. Chem. 2017. V. 38. P. 2581. https://doi.org/10.1002/jcc.24916
  30. Evarestov R.A., Kovalenko A.V., Bandura A.V. et al. // Mater. Res. Express. 2018. V. 5. P. 115028. https://doi.org/10.1088/2053-1591/aadf00
  31. Bandura A.V., Lukyanov S.I., Kuruch D.D., Evarestov R.A. // Physica E. 2020. V. 124. P. 114183. https://doi.org/10.1016/j.physe.2020.114183
  32. Piskunov S., Lisovski O., Zhukovskii Y.F. et al. // ACS Omega. 2019. V. 4. P. 1434. https://doi.org/10.1021/acsomega.8b03121
  33. Talla J.A., Al-Khaza’leh Kh., Omar N. // Russ. J. Inorg. Chem. 2022. V. 67. № 7. P. 1025. https://doi.org/10.1134/S0036023622070178
  34. Lukyanov S.I., Bandura A.V., Evarestov R.A. et al. // Physica E. 2021. V. 133. P. 114779. https://doi.org/10.1016/j.physe.2021.114779
  35. Dovesi R., Erba A., Orlando R. et al. // WIREs Comput. Mol. Sci. 2018. V. 8. № 4. P. e1360. https://doi.org/10.1002/wcms.1360
  36. Dovesi R., Saunders V.R., Roetti C. et al. // CRYSTAL17 User’s Manual. University of Turin. Torino, 2018.
  37. Pacios L.F., Christiansen P.A. // J. Chem. Phys. 1985. V. 82. P. 2664. https://doi.org/10.1063/1.448263
  38. Ross R.B., Powers J.M., Atashroo T. et al. // J. Chem. Phys. 1990. V. 93. P. 6654. https://doi.org/10.1063/1.458934
  39. Heyd J., Scuseria G.E., Ernzerhof M. // J. Chem. Phys. 2003. V. 118. P. 8207. https://doi.org/10.1063/1.1564060
  40. Monkhorst H.J., Pack J.D. // Phys. Rev. B. 1976. V. 13. № 12. P. 5188. https://doi.org/10.1103/PhysRevB.13.5188
  41. Grimme S. // J. Comput. Chem. 2006. V. 27. P. 1787. https://doi.org/10.1002/jcc.20495
  42. Gale J.D., Rohl A.L. // Mol. Simulation. 2003. V. 29. № 5. P. 291. https://doi.org/10.1080/0892702031000104887
  43. Shi S., Yan L., Yang Y. et al. // J. Comput. Chem. 2003. V. 24. P. 1059. https://doi.org/10.1002/jcc.10171
  44. Krishnamoorthy A., Mishra A., Kamal D. et al. // SoftwareX. 2021. V. 13. P. 100663. https://doi.org/10.1016/j.softx.2021.100663
  45. Nomura K., Kalia R.K., Nakano A. et al. // SoftwareX. 2020. V. 11. P. 100389. https://doi.org/10.1016/j.softx.2019.100389
  46. Platypus // https://github.com/Project-Platypus/Platypus (accessed May 23, 2023)
  47. Waskom M.L. // J. Open Source Soft. 2021. V. 6. № 60. P. 3021. https://doi.org/10.21105/joss.03021
  48. Hunter J.D. // Comput. Sci. Eng. 2007. V. 9. № 3. P. 90. https://doi.org/10.1109/MCSE.2007.55
  49. The pandas development team. Zenodo 2023. pandas-dev/pandas: Pandas (v2.0.1). https://doi.org/10.5281/zenodo.7857418
  50. Pedregosa F., Varoquaux G., Gramfort A. et al. // J. Machine Learning Res. 2011. V. 12. P. 2825. https://doi.org/10.48550/arXiv.1201.0490
  51. Schutte W.J., De Boer J.L., Jellinek F. // J. Solid State Chem. 1987. V. 70. № 2. P. 207. https://doi.org/10.1016/0022-4596(87)90057-0
  52. Bandura A.V., Evarestov R.A. // Sur. Sci. 2015. V. 641. P. 6. https://doi.org/10.1016/j.susc.2015.04.027
  53. Seifert G., Köhler T., Tenne R. // J. Phys. Chem. B. 2002. V. 106. № 10. P. 2497. https://doi.org/10.1021/jp0131323

补充文件

附件文件
动作
1. JATS XML
2.

下载 (137KB)
3.

下载 (62KB)
4.

下载 (81KB)
5.

下载 (807KB)
6.

下载 (102KB)

版权所有 © А.В. Бандура, С.И. Лукьянов, А.В. Домнин, Д.Д. Куруч, Р.А. Эварестов, 2023

##common.cookie##