Reaction of Highly Dispersed Nickel Metal Powders with Pd(II) Aqueous Solutions under Hydrothermal Conditions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The processes of contact reaction of nickel metal powders with aggregated particle sizes of 300–400 nm with aqueous solutions of palladium(II) in autoclaves at elevated temperatures in acidic and alkaline media have been studied. It has been found that when metallic nickel contacts with aqueous solutions of palladium(II) chloride in 0.01 M hydrochloric acid at temperatures of 100 and 130°C for 15 min, the concentration of divalent palladium ions decreases to zero. The process is accompanied by a partial transition of nickel into solution. The precipitates are a mixture of metallic particles of nickel and palladium of variable compositions. In the case of contact of metallic nickel with solutions of tetraammine palladium(II) chloride at temperatures of 160 and 170°C in a medium of 0.1 M potassium hydroxide, metal palladium particles 5–25 nm in size are formed on the surface of larger nickel particles. The structure of bimetallic particles has been determined by X-ray photoelectron microscopy.

作者简介

R. Borisov

Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences; Siberian Federal University

Email: roma_boris@list.ru
660036, Krasnoyarsk, Russia; 660041, Krasnoyarsk, Russia

O. Belousov

Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences; Siberian Federal University

Email: roma_boris@list.ru
660036, Krasnoyarsk, Russia; 660041, Krasnoyarsk, Russia

M. Likhatski

Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences

Email: roma_boris@list.ru
660036, Krasnoyarsk, Russia

A. Zhizhaev

Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: roma_boris@list.ru
660036, Krasnoyarsk, Russia

参考

  1. Jia M., Choi C., Wu T.S. et al. // Chem. Sci. 2018. V. 9. № 47. P. 8775. https://doi.org/10.1039/C8SC03732A
  2. Ali S., Sharma A.S., Ahmad W. et al. // Crit. Rev. Anal. Chem. 2021. V. 51. № 5. P. 454. https://doi.org/10.1080/10408347.2020.1743964
  3. Jamila N., Khan N., Bibi A. et al. // J. Chem. 2020. V. 13. № 8. P. 6425. https://doi.org/10.1016/j.arabjc.2020.06.001
  4. Gour A., Jain N.K. // Artificial Cells, Nanomedicine, Biotechnol. 2019. V. 47. № 1. P. 844. https://doi.org/10.1080/21691401.2019.1577878
  5. Liu C.H., Liu R.H., Sun Q.J., Chang J.B. et al. // Nanoscale. 2015. V. 7. № 14. P. 6356. https://doi.org/10.1039/C4NR06855F
  6. Soloveva A.Y., Eremenko N.K., Obraztsova I.I. et al. // Russ. J. Inorg. Chem. 2018. V. 63. P. 444. https://doi.org/10.1134/S0036023618040204
  7. Schnedlitz M., Fernandez-Perea R., Knez D. et al. // J. Phys. Chem. C. 2019. V. 123. № 32. P. 20037. https://doi.org/10.1021/acs.jpcc.9b05765
  8. Chen D., Liu S., Li J., Zhao N. et al. // J. Alloys Compoun. 2009. V. 475. P. 494. https://doi.org/10.1016/j.jallcom.2008.07.115
  9. Almeida C.V., Tremiliosi-Filho G., Eguiluz K.I., Salazar-Banda G.R. // J. Catalysis. 2020. V. 391. P. 175. https://doi.org/10.1016/j.jcat.2020.08.024
  10. Spasova M., Salgueiriño-Maceira V., Schlachter A. et al. // J. Mater. Chem. 2005. V. 15. № 21. P. 2095. https://doi.org/10.1039/B502065D
  11. Correa-Duarte M.A., Grzelczak M., Salgueiriño-Maceira V. et al. // J. Phys. Chem. B. 2005. V.109. № 41. P. 19060–19063. https://doi.org/10.1021/jp0544890
  12. Yin W., Venderbosch R.H., Yakovlev V.A. et al. // Energies. 2020. V. 13. № 1. P. 285. https://doi.org/10.3390/en13010285
  13. Bumagin N.A. // Russ. J. Gen. Chem. 2022. V. 92. P. 832. https://doi.org/10.1134/S1070363222050127
  14. Srinoi P., Chen Y.-T., Vittur V., Marquez M., Lee T. // Appl. Sci. 2018. V. 8. P. 1106. https://doi.org/10.3390/app8071106
  15. Maduraiveeran G., Rasik R., Sasidharan M., Jin W. // J. Electroanal. Chem. 2018. V. 808. P. 259. https://doi.org/10.1016/j.jelechem.2017.12.027
  16. Šuljagić M., Stanković D., Mirković M. et al. // Russ. J. Inorg. Chem. 2022. V. 67. Suppl. 1. P. S13. https://doi.org/10.1134/S003602362260201X
  17. Sun J., Yang F., Zhao D. et al. // ACS Appl. Mater. Interfaces. 2015. V. 7. P. 6860. https://doi.org/10.1021/acsami.5b00434
  18. Sopoušek J., Kryštofová A., Premović M. et al. // Calphad. 2017. V. 58. P. 25. https://doi.org/10.1016/j.calphad.2017.05.002
  19. Fedorov P.P., Popov A.A., Shubin Y.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 2018. https://doi.org/10.1134/S0036023622601453
  20. Jia F.L., Zhang L.Z., Shang X.Y., Yang Y. // Adv. Mater. 2008. V. 20. № 5. P. 1050. https://doi.org/10.1002/adma.200702159
  21. Senapati S., Srivastava S.K., Singh S.B., Mishra H.N. // J. Mater. Chem. 2012. V. 22. № 14. P. 6899. https://doi.org/10.1039/C2JM00143H
  22. Egorysheva A.V., Ellert O.G., Liberman E.Y. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 2127. https://doi.org/10.1134/S0036023622601349
  23. Ioni Y.V., Chentsov, S.I., Sapkov I.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1711. https://doi.org/10.1134/S0036023622601076
  24. Vorobyev A.M., Titkov A.I., Logutenko O.A. // Russ. J. Gen. Chem. 2022. V. 92. P. 430. https://doi.org/10.1134/S1070363222030100
  25. Yousefi S.R., Ghanbari D., Salavati-Niasari M. et al. // J. Mater. Sci.: Mater. Electron. 2016. V. 27. P. 1244. https://doi.org/10.1007/s10854-015-3882-6
  26. Gubin S.P., Koksharov Y.A., Khomutov G.B. et al. // Russ. Chem. Rev. 2005. V. 74. № 6. P. 489.
  27. Zakharov Y.A., Pugachev V.M., Bogomyakov A.S. et al. // J. Phys. Chem. C. 2020. V. 124. № 1. P. 1008. https://doi.org/10.1021/acs.jpcc.9b07897
  28. Shafique M.K., Muhmood T., Lin S. et al. // Mater. Res. Express. 2019. V.6. № 10. P. 108001.
  29. Belousov O.V., Borisov R.V., Belousova N.V. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1463. https://doi.org/10.1134/S003602362110003X
  30. Fesik E.V., Buslaeva T.M., Mel’nikova T.I. et al. // Inorg. Mater. 2018. V. 54. № 12. P. 1299. https://doi.org/10.1134/S0020168518120038
  31. Du H., Wang Y., Yuan H. et al. // Electrochim. Acta. 2016. V. 196. P. 84. https://doi.org/10.1016/j.electacta.2016.02.190
  32. Zhang F., Chen Y., Zhao J. et al. // Chem. Lett. 2004. V. 33. № 2. P. 146. https://doi.org/10.1246/cl.2004.146
  33. Kashid S. B., Raut R.W., Malghe, Y.S. // Maters. Chem. Phys. 2016. V. 170. P. 24. https://doi.org/10.1016/j.matchemphys.2015.12.014
  34. Borisov R.V., Belousov O.V., Zhizhaev A.M. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 3. P. 308. https://doi.org/10.1134/S0036023618030038
  35. Borisov R.V., Belousov O.V., Zhizhaev A.M. et al. // Russ. Chem. Bull. 2021. V. 70. P. 1474. https://doi.org/10.1007/s11172-021-3242-z
  36. Borisov R.V., Belousov O.V., Zhizhaev A.M. // Russ. J. Inorg. Chem. 2020. V. 65. № 10. P. 1623. https://doi.org/10.1134/S0036023620100034
  37. Borisov R.V., Belousov O.V., Likhatski M.N. et al. // Russ. Chem. Bull. 2022. V. 71. P. 1164. https://doi.org/10.1007/s11172-022-3517-z
  38. Belousov O.V., Belousova N.V., Sirotina A.V. et al. // Langmuir. 2011. V. 27. P. 11697. https://doi.org/10.1021/la202686x
  39. Grosvenor A.P., Biesinger M.C., Smart R.S. et al. // Surf. Sci. 2006. V. 600. № 9. P. 1771. https://doi.org/10.1016/j.susc.2006.01.041
  40. Lenglet M., Hochu F., Durr J., Tuilier M.H. // Sol. St. Comm. 1997. V. 104. P. 793. https://doi.org/10.1016/S0038-1098(97)00273-1
  41. Jenks C.J., Chang S.L., Anderegg J.W. et al. // Phys. Rev. B. 1996. V. 54. P. 6301. https://doi.org/10.1103/PhysRevB.54.6301
  42. Patterson A.L. // Phys. Rev. 1939. V. 56. P. 978. https://doi.org/10.1103/PhysRev.56.978

补充文件

附件文件
动作
1. JATS XML
2.

下载 (195KB)
3.

下载 (1MB)
4.

下载 (1MB)
5.

下载 (142KB)
6.

下载 (1MB)
7.

下载 (168KB)

版权所有 © Р.В. Борисов, О.В. Белоусов, М.Н. Лихацкий, А.М. Жижаев, 2023

##common.cookie##