Thermochemical Investigations of Bismuth, Dysprosium, Samarium, and Niobium Oxide Compounds

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Ceramic Bi1.4Dy0.6O3 and Bi3Nb0.2Sm0.8O6.2 samples were prepared by solid-phase synthesis. The compounds have cubic structures (space group Fm3m). Their standard enthalpies of formation were determined by solution calorimetry, and their lattice enthalpies were calculated. The lattice enthalpies of Bi3Nb0.2R0.8O6.2 compounds decrease in magnitude when erbium is replaced by samarium, due to the lanthanide radius increasing from erbium to samarium. The lattice enthalpy of Bi1.4Dy0.6O3 has a greater magnitude than the lattice enthalpy of Bi1.2Gd0.8O3.

作者简介

N. Matskevich

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: nata.matskevich@yandex.ru
630090, Novosibirsk, Russia

A. Semerikova

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: nata.matskevich@yandex.ru
630090, Novosibirsk, Russia

N. Gelfond

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: nata.matskevich@yandex.ru
630090, Novosibirsk, Russia

E. Tkachev

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: nata.matskevich@yandex.ru
630090, Novosibirsk, Russia

M. Matskevich

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: nata.matskevich@yandex.ru
630090, Novosibirsk, Russia

O. Anufrieva

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: nata.matskevich@yandex.ru
630090, Novosibirsk, Russia

P. Bezverkhii

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: nata.matskevich@yandex.ru
630090, Novosibirsk, Russia

参考

  1. Punn R., Feteira A.M., Sinclair D.C. et al. // J. Am. Chem. Soc. 2006. V. 128. P. 15386. https://doi.org/10.1021/ja065961d
  2. Lomanova N.A. // Russ. J. Inorg. Chem. 2022. V. 67. P. 741. https://doi.org/10.1134/S0036023622060146
  3. Buyanova E.S., Emel’yanova Yu.V., Morozova M.V. et al. // Russ. J. Inorg. Chem. 2018. V. 63. P. 1297. https://doi.org/10.1134/S0036023618100042
  4. Drache M., Roussel P., Wignacourt J.P. // Chem. Rev. 2007. V. 107. P. 80. https://doi.org/10.1021/cr050977s
  5. Proskurina O.V., Sokolova A.N., Sirotkin A.A. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 163. https://doi.org/10.1134/S0036023621020157
  6. Dmitriev A.V., Vladimirov E.V., Kellerman D.G. et al. // J. Electron. Mater. 2019. V. 48. P. 4959. https://doi.org/10.1007/s11664-019-07227-1
  7. Elovikov D.P., Tomkovich M.V., Levin A.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 850. https://doi.org/10.1134/S0036023622060067
  8. Lomakin M.S., Proskurina O.V., Levin A.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 820. https://doi.org/10.1134/S0036023622060134
  9. Borowska–Centhowska A., Liu X., Krynski M. et al. // RSC Advances. 2019. V. 9. P. 9640. https://doi.org/10.1039/c9ra01233h
  10. Ivanov S.A., Stash A.I., Bush A.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 588. https://doi.org/10.1134/S0036023622050096
  11. Hervoches C.H., Greaves C. // J. Mater. Chem. 2010. V. 20. P. 6759. https://doi.org/10.1039/c0jm01385d
  12. Dergacheva P.E., Kulbakin I.V., Ashmarin A.A. et al. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1229. https://doi.org/10.1134/S0036023621080040
  13. Novikov A.A., Belova E.V., Uspenskaya I.A. // J. Chem. Eng. Data. 2019. V. 64. P. 4230. https://doi.org/10.1021/acs.jced.9b00292
  14. Kosova D.A., Druzhinina A.I., Tiflova L.A. et al. // J. Chem. Thermodyn. 2018. V. 118. P. 206. https://doi.org/10.1016/j.jct.2017.11.016
  15. Shelyug A., Navrotsky A. // ACS Earth Space Chem. 2021. V. 5. P. 703. https://doi.org/10.1021/acsearthspacechem.0c00199
  16. Matskevich N.I., Shlegel V.N., Sednev A.L. et al. // J. Chem. Thermodyn. 2020. V. 143. P. 106059. https://doi.org/10.1016/j.jct.2020.106059
  17. Matskevich N.I., Chuprova M.V., Punn R. et al. // Thermochim. Acta. 2007. V. 459. P. 125. https://doi.org/10.1016/j.tca.2007.03.015
  18. Matskevich N., Wolf T. // Thermochim. Acta. 2007. V. 467. P. 113. https://doi.org/10.1016/j.tca.2007.10.013
  19. Kilday M.V. // J. Res. Nat. Bur. Stand. 1980. V. 85. P. 467.
  20. Morss L.R. // Chem. Rev. 1976. V. 76. P. 827. https://doi.org/10.1021/cr60304a007
  21. Glushko V.P. Termicheskie Konstanty Veshchestv (Thermal Constants of Substances). M.: VINITI, 1965–1982. № 1–10.
  22. Matskevich N.I., Semerikova A.N., Samoshkin D.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 11.
  23. Shannon R.D. // Acta Crystallogr. 1976. V. A32. P. 751. https://doi.org/10.1107/S0567739476001551
  24. Hennig C., Oppermann H. // Z. Naturforsch. B. 1997. V. 52. № 12. P. 1517. https://doi.org/10.1515/znb-1997-1213
  25. Schmidt M., Oppermann H., Hennig C. et al. // Z. Anorg. Allg. Chem. 2000. V. 626. № 1. P. 125. https://doi.org/10.1002/(sici)1521-3749(200001)626:1-%3c125::aid-zaac125%3e3.0.co;2-s
  26. Matskevich N.I., Semerikova A.N., Gelfond N.V. et al. // Russ. J. Inorg. Chem. 2020. V. 65. P. 743. https://doi.org/10.1134/S0036023620050162

补充文件

附件文件
动作
1. JATS XML
2.

下载 (94KB)

版权所有 © Н.И. Мацкевич, А.Н. Семерикова, Н.В. Гельфонд, Е.Н. Ткачев, М.Ю. Мацкевич, О.И. Ануфриева, П.П. Безверхий, 2023

##common.cookie##