Group Extraction of the Rare-Earth Elements by Alkyl Phosphine Oxides of the Hexyl–Octyl Series

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Samples of monoalkyl and mixed-alkyl phosphine oxides of the hexyl–octyl series were synthesized previously by the Grignard method. Here, the group extraction of rare-earth metals contained simultaneously in their nitrate solutions has been studied using then-synthesized alkyl phosphine oxides. Extraction isotherms for the recovery of the total of lanthanides, scandium, and thorium from nitrate solutions have been obtained. Trihexyl phosphine oxide (THPO) exhibits the highest efficiency under these conditions. Trioctyl phosphine oxide (TOPO) exhibits the best selectivity to heavy-group lanthanides, which makes it useful for the recovery of the heavy-group lanthanide fraction. In addition, scandium and thorium were extracted completely, which in turn indicates the usefulness of phosphine oxides for their extraction. The separation factors have been determined for the entire lanthanides series.

作者简介

V. Tumanov

Luch Research and Production Association

Email: neijivlad@mail.ru
142100, Podolsk, Moscow oblast, Russia

P. Storozhenko

State Research Institute of Chemistry and Technology of Organoelement Compounds

Email: neijivlad@mail.ru
105118, Moscow, Russia

A. Grachev

State Research Institute of Chemistry and Technology of Organoelement Compounds

Email: neijivlad@mail.ru
105118, Moscow, Russia

O. Fedin

Luch Research and Production Association

编辑信件的主要联系方式.
Email: neijivlad@mail.ru
142100, Podolsk, Moscow oblast, Russia

参考

  1. Михайличенко А.И., Михлин Е.Б., Патрикеев Ю.Б. Редкоземельные металлы. М.: Металлургия, 1987. 232 с.
  2. Zhang J., Zhao B., Schreiner B. Separation Hydrometallurgy of Rare Earth Elements. Springer London, 2016. P. 259. https://doi.org/10.1007/978-3-319-28235-0
  3. Rickelton W.A., Robertson A.J. Process for solvent extraction using phosphine oxide mixtures. US4909939A USA. 1990. Int. Cl. B01D 11/04.
  4. Li W., Wang X., Zhang H. et al. // J. Chem. Technol. Biotechnol. 2007. V. 82. № 4. P. 376. https://doi.org/10.1002/jctb.1680
  5. Fleitlikh I.Yu., Grigorieva N.A., Nikiforova L.K. et al. // Sep. Sci. Technol. 2017. P. 1. https://doi.org/10.1080/01496395.2017.1291682
  6. Navarro R., Saucedo I., Ávila M. et al. // Solvent Extr. Ion Exch. 2007. V. 25. № 2. P. 273. https://doi.org/10.1080/0736629060116938
  7. Kaŝpárek F., Trávnicek Z., Posolda M. et al. // J. Coord. Chem. 1998. V. 44. P. 61. https://doi.org/10.1080/00958979808022880
  8. Huang T., Huang C., Chen D. // Solvent Extr. Ion Exch. 1997. V. 15. № 5. P. 837. https://doi.org/10.1080/07366299708934509
  9. Fleitlikh I.Yu., Grigorieva N.A., Nikiforova L.K. et al. // Hydrometallurgy. 2017. V. 169. P. 585. https://doi.org/10.1016/j.hydromet.2017.04.004
  10. Zhang L., Ji L., Li L. et al. // Hydrometallurgy. 2021. V. 204. № 105718. https://doi.org/10.1016/j.hydromet.2021.105718
  11. Xia X., Zhang G., Guan W. et al. // Hydrometallurgy. 2022. V. 208. № 105818. https://doi.org/10.1016/j.hydromet.2022.105818
  12. Zou D., Chen J., Li D. // Sep. Purif. Technol. 2021.V. 277. № 119470. https://doi.org/10.1016/j.seppur.2021.119470
  13. Turanov A.N., Karandashev V.K., Kharitonov A.V. // Solv. Ext. Ion Exch. 1999. V. 17. № 6. P. 1423.
  14. Chhatre M.H., Shinde V.M. // Solv. Ext. Ion Exch. 2000. V. 18. № 1. P. 41. https://doi.org/10.1080/07366290008934671
  15. Aly H.F, Khalifa S.M., Zakareia N. // Solv. Ext. Ion Exch. 1984. V. 2. № 6. P. 887. https://doi.org/10.1080/07366298408918480
  16. Padhan E., Sarangi K. // Miner. Process. Extr. Metall. 2017. V. 128. № 3. P. 168. https://doi.org/10.1080/03719553.2017.1381815
  17. Ali A. // Radiochim. Acta. 2004. V. 92. № 12. P. 925. https://doi.org/10.1524/ract.92.12.925.55102
  18. Batchu N.K., Li Z., Verbelen B. et al. // Sep. Purif. Technol. 2021. V. 205. № 117711. https://doi.org/10.1016/j.seppur.2020.117711
  19. Jesus K.D., Rodriguez R., Baek D.L. et al. // J. Mol. Liq. 2021. V. 333. № 116006. https://doi.org/10.1016/j.molliq.2021.116006
  20. Alcaraz L., Largo O.R., Alguacil F.J. et al. // Metals. 2022. V. 12. P. 378. https://doi.org/10.3390/met12030378
  21. Harmon H.D., Peterson J.R. // J. Inorg. Nucl. Chem. 1976. V. 38. P. 155.
  22. Mishra S., Chakravortty V., Vasudeva Rao P.R. // J. Radioanal. Nucl. Chem. Lett. 1995. V. 201. № 4. P. 325.
  23. Jianchen W., Chongli S. // Solv. Ext. Ion Exch. 2001. V. 19. № 2. P. 231. https://doi.org/10.1081/SEI-100102693
  24. Wang J., Song C., Liu B. // J. Nucl. Radiochem. 1995. V. 17. № 3. P. 129.
  25. Mitrofanov A., Andreadi N., Matveev P. et al. // J. Mol. Liq. 2021. V. 325. № 115098. https://doi.org/10.1016/j.molliq.2020.115098
  26. Annam S., Gopakumar G., Rao C.V.S.B. // J. Mol. Liq. 2018. V. 256. P. 416. https://doi.org/10.1016/j.molliq.2018.02.063
  27. Donat R., Tavsan E. // Heliyon. 2022. V. 8. № e09258. https://doi.org/10.1016/j.heliyon.2022.e09258
  28. Tumanov V.V., Storozhenko P.A., Magdeev K.D. et al. // Russ. J. Phys. Chem. A. 2022. V. 96. № 6. P. 1327. https://doi.org/10.1134/S0036024422060279
  29. Dziwinski E., Szymanowski J. // Solv. Ext. Ion Exch. 1998. V. 16. P. 1515. https://doi.org/10.1080/07366299808934592
  30. Кнунянц И.Л. Химическая энциклопедия. В 5 т. Т. 4: Полимерные материалы – Трипсин. М.: Большая Рос. энцикл., 1995. 639 с.
  31. Rydberg J., Musikas C., Choppin G.R. Complexation of Metal Ions in Principles of Solvent Extraction. N.Y.: M. Dekker, 1992. P. 71.
  32. Mastryukova T.A., Kabachnik M.I. // J. Org. Chem. 1971. V. 336. P. 1201.
  33. Розен А.М., Крупнов Б.В. // Успехи химии. 1996. Т. 65. Вып. 11. С. 1052.
  34. Schurhammer A., Erhart V., Troxler L. et al. // J. Chem. Soc., Perkin Trans. 1999. V. 2. P. 2423.
  35. Nagaphani Kumar B., Zheng L., Bram V. // Sep. Purif. Technol. 2021. V. 225. P. 117711. https://doi.org/10.1016/j.seppur.2020.117711

补充文件

附件文件
动作
1. JATS XML
2.

下载 (222KB)

版权所有 © В.В. Туманов, П.А. Стороженко, А.А. Грачёв, О.И. Федин, 2023

##common.cookie##