Оценка хансеновских параметров низкоразмерных частиц слоистых дихалькогенидов ванадия, ниобия и тантала

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Методом жидкофазной эксфолиации при ультразвуковой обработке получены низкоразмерные флейки слоистых дихалькогенидов TaX2 (X = S, Se, Te), VSe2 и NbSe2. Путем измерения оптической плотности дисперсии в различных жидких средах приближенно установлены хансеновские параметры этих соединений. Показано, что содержание низкоразмерных частиц дихалькогенидов в образце возрастает при уменьшении хансеновской дистанции между дихалькогенидами и эксфолиационной средой. Предложен способ качественно оценить влияние эксфолиационной среды на размер формирующихся в процессе эксфолиации частиц и показано, что уменьшение абсолютного значения параметров δполярный и δводородный в изученных системах приводит к уменьшению размера получаемых флейков.

Об авторах

К. С. Никонов

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Автор, ответственный за переписку.
Email: nikonovk.s@yandex.ru
Россия, Ленинский пр-т, 31, Москва, 119991

Т. К. Менщикова

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: nikonovk.s@yandex.ru
Россия, Ленинский пр-т, 31, Москва, 119991

М. Н. Бреховских

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: nikonovk.s@yandex.ru
Россия, Ленинский пр-т, 31, Москва, 119991

Список литературы

  1. Coleman J.N., Lotya M., O’Neill A. et al. // Science. 2011. V. 331. № 6017. Р. 568. https://doi.org/10.1126/science.1194975
  2. Hildebrand H.J. Solubility of Non-electrolytes. N.Y.: Reinhold Publ. Corp., 1936. 203 p.
  3. Süß S., Sobisch T., Peukert W. et al. // Adv. Powder Technol. 2018. V. 29. № 7. P. 1550. https://doi.org/10.1016/j.apt.2018.03.018
  4. Venkatram Sh., Kim Ch., Chandrasekaran A., Ramprasad R. // J. Chem. Inf. Model. 2019. V. 59. № 10. P. 4188. https://doi.org/10.1021/acs.jcim.9b00656
  5. Садовников С.И. // Журн. неорган. химии. 2023. V. 68. № 3. P. 411. https://doi.org/10.31857/S0044457X22601559
  6. Mathieu D. // ACS Omega. 2018. V. 3. № 12. P. 17049. https://doi.org/10.1021/acsomega.8b02601
  7. Gilliam M.S., Yousaf A., Guo Y., et al. // Langmuir. 2021. V. 37. № 3. Р. 1194. https://doi.org/10.1021/acs.langmuir.0c03138
  8. Cunningham G., Lotya M., Cucinotta C.S. et al. // ACS Nano. 2012. V. 6. № 4. P. 3468. https://doi.org/10.1021/nn300503e
  9. Kumar S., Pratap S., Joshi N. et al. // Micro and Nanostructures. 2023. V. 181. P. 207627. https://doi.org/10.1016/j.micrna.2023.207627
  10. Eaglesham D.J., Withers R.L., Bird D.M. // J. Phys. C: Solid State Phys. 1986. V. 19. № 3. P. 359. https://doi.org/10.1088/0022–3719/19/3/006
  11. Xi X., Zhao L., Wang Z. et al. // Nature Nanotech. 2015. V. 10. P. 765. https://doi.org/10.1038/nnano.2015.143
  12. Zhou L., Sun Ch., Li X. et al. // Nano Express. 2020. V. 15. P. 20. https://doi.org/10.1186/s11671-020-3250-1
  13. Mahajan M., Kallatt S., Dandu M. et al. // Commun. Phys. 2019. V. 2. Р. 88. https://doi.org/10.1038/s42005-019-0190-0
  14. Wu J., Peng J., Yu Zh. et al. // J. Am. Chem. Soc. 2018. V. 140. № 1. Р. 493. https://doi.org/10.1021/jacs.7b11915
  15. Yang W., Gan L., Li H. et al. // Inorg. Chem. Front. 2016. V. 3. Р. 433. https://doi.org/10.1039/C5QI00251F
  16. Jia Y., Liao Y., Cai H. // Nanomaterials. 2022. V. 12. P. 2075. https://doi.org/10.3390/nano12122075
  17. Wang J., Guo C., Guo W. et al. // Chinese Phys. B. 2019. V. 28. № 4. Р. 046802. https://doi.org/10.1088/1674-1056/28/4/046802
  18. Li H., Tan Y., Liu P. et al. // Adv. Mater. 2016. V. 28. № 40. P. 8945. https://doi.org/10.1002/adma.201602502
  19. Wang F., Mao J. // Mater. Horiz. 2023. V. 10. № 5. P. 1780. https://doi.org/10.1039/D3MH00072A
  20. Никонов К.С., Ильясов А.С., Бреховских М.Н. // Журн. неорган. химии. 2020. Т. 65. № 9. С. 1222. https://doi.org/10.1134/S0036023620090120
  21. Yang L., Zhao R., Wu D. et al. // Sensors. 2021. V. 21. № 1. P. 239. https://doi.org/10.3390/s21010239
  22. Hansen Ch.M. Hansen Solubility Parameters: A User’s Handbook. Boca Raton, London, NY: CRC Press, 2007. 544 p.
  23. Segets D., Gradl J., Taylor R.К. et al. // ACS Nano. 2009. V. 3. № 7. Р. 1703. https://doi.org/10.1021/nn900223b

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».