Высокотемпературное масс-спектрометрическое изучение испарения оксикарбидной керамики на основе МАХ-фаз

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Изучены процессы испарения карбидных материалов химического состава Ti2SiC, Ti3SiC2, Ti2AlC, Ti3AlC2, Zr2AlC и Zr3AlC2, содержащих МАХ-фазы, а также оксикарбидных систем на их основе с добавлением HfO2 масс-спектрометрическим эффузионным методом Кнудсена до температуры 2200 K. Установлено, что основной молекулярной формой пара над образцами состава Ti2AlC, Ti3AlC2, Zr2AlC и Zr3AlC2 при температуре 1٥00 K является атомарный алюминий. Образцы, содержащие кремний, менее летучи, по сравнению с карбидными материалами с алюминием, и переходят в пар при температурах >1900 K с образованием газообразных Si, Si2, SiC2 и Si2C. Введение оксидa гафния в изученные карбиды приводит к появлению в паре кислородсодержащих молекулярных форм, в частности Al2O и SiO, и уменьшению общего давления пара над образующимися системами. Показано, что наиболее труднолетучими являются образцы оксикарбидной системы Ti2SiC–HfO2, а среди оксикарбидных систем, содержащих алюминий, – образцы системы Zr2AlC–HfO2 при содержании оксида гафния до 10 мол. % и системы Ti2AlC–HfO2 при большем содержании HfO2.

Об авторах

В. А. Ворожцов

Институт химии силикатов им. И.В. Гребенщикова РАН

Автор, ответственный за переписку.
Email: v.vorozhcov@rambler.ru
Россия, Санкт-Петербург

В. Л. Столярова

Институт химии силикатов им. И.В. Гребенщикова РАН; Санкт-Петербургский государственный университет

Email: v.vorozhcov@rambler.ru
Россия, Санкт-Петербург; Санкт-Петербург

С. И. Лопатин

Институт химии силикатов им. И.В. Гребенщикова РАН; Санкт-Петербургский государственный университет

Email: v.vorozhcov@rambler.ru
Россия, Санкт-Петербург; Санкт-Петербург

А. Л. Шилов

Институт химии силикатов им. И.В. Гребенщикова РАН

Email: v.vorozhcov@rambler.ru
Россия, Санкт-Петербург

Список литературы

  1. Barsoum M.W. // Prog. Solid State Chem. 2000. V. 28. № 1–4. P. 201. https://doi.org/10.1016/S0079-6786(00)00006-6
  2. Radovic M., Barsoum M.W. // Am. Ceram. Soc. Bull. 2013. V. 92. № 3. P. 20. https://bulletin-archive.ceramics.org/is-cacheable/1605850406926/ucujko.pdf
  3. Gonzalez-Julian J. // J. Am. Ceram. Soc. 2021. V. 104. № 2. P. 659. https://doi.org/10.1111/jace.17544
  4. Kovalev D.Y., Luginina M.A., Vadchenko S.G. // Russ. J. Inorg. Chem. 2017. V. 62. № 12. P. 1638. https://doi.org/10.1134/S0036023617120117
  5. Simonenko E.P., Simonenko N.P., Nagornov I.A. // Russ. J. Inorg. Chem. 2022. V. 67. № 5. P. 705. https://doi.org/10.1134/S0036023622050187
  6. Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 11. P. 1838. https://doi.org/10.1134/S0036023622601222
  7. Hoffman E.N., Vinson D.W., Sindelar R.L. et al. // Nucl. Eng. Des. 2012. V. 244. P. 17. https://doi.org/10.1016/j.nucengdes.2011.12.009
  8. Lee W.E., Giorgi E., Harrison R. et al. // Ultra-High Temp. Ceram. Mater. Extrem. Environ. Appl. Hoboken: John Wiley & Sons, Inc., 2014. P. 391. https://doi.org/10.1002/9781118700853.ch15
  9. Galvin T., Hyatt N.C., Rainforth W.M. et al. // Nucl. Mater. Energy. 2020. V. 22. P. 100725. https://doi.org/10.1016/j.nme.2020.100725
  10. Альмяшев В.И., Столярова В.Л., Крушинов Е.В. и др. // Технологии обеспечения жизненного цикла ядерных энергетических установок. 2023. Т. 31. № 1. С. 60. https://doi.org/10.52069/2414-5726_2023_1_31_60
  11. Wen Z., Tang Z., Meng H. et al. // Corros. Sci. 2022. V. 207. P. 110574. https://doi.org/10.1016/j.corsci.2022.110574
  12. Казенас Е.К., Цветков Ю.В. // Испарение карбидов. М.: Красанд, 2017. https://www.rfbr.ru/rffi/portal/books/o_2053121
  13. Rinehart G.H., Behrens R.G. // J. Chem. Thermodyn. 1980. V. 12. № 3. P. 205. https://doi.org/10.1016/0021-9614(80)90038-5
  14. Drowart J., De Maria G., Inghram M.G. // J. Chem. Phys. 1958. V. 29. № 5. P. 1015. https://doi.org/10.1063/1.1744646
  15. Cao Z., Xie W., Jung I.H. et al. // Metall. Mater. Trans. B: Process Metall. Mater. Process. Sci. 2015. V. 46. № 4. P. 1782. https://doi.org/10.1007/s11663-015-0344-8
  16. Stearns C.A., Kohl F.J. // Mass spectrometric determination of the dissociation energies of titanium dicarbide and titanium tetracarbide. NASA Technical Note D-5653. Cleveland, 1970.
  17. Li Y.L., Ishigaki T. // Mater. Sci. Eng. A. 2003. V. 345. № 1–2. P. 301. https://doi.org/10.1016/S0921-5093(02)00506-3
  18. Stearns C.A., Kohl F.J. // High-temperature mass spectrometry – Vaporization of group 4-B metal carbides. NASA Technical Note D-7613, Cleveland, 1974. https://ntrs.nasa.gov/search.jsp?R=19740012680 (accessed March 24, 2020)
  19. Keast V.J., Harris S., Smith D.K. // Phys. Rev. B. 2009. V. 80. № 21. P. 214113. https://doi.org/10.1103/PhysRevB.80.214113
  20. Sauceda D., Singh P., Falkowski A.R. et al. // npj Comput. Mater. 2021. V. 7. № 1. P. 6. https://doi.org/10.1038/s41524-020-00464-7
  21. Perevislov S.N., Sokolova T.V., Stolyarova V.L. // Mater. Chem. Phys. 2021. V. 267. P. 124625. https://doi.org/10.1016/j.matchemphys.2021.124625
  22. Perevislov S.N., Semenova V.V., Lysenkov A.S. // Russ. J. Inorg. Chem. 2021. V. 66. № 8. P. 1100. https://doi.org/10.1134/S0036023621080210
  23. Perevislov S.N., Arlashkin I.E., Lysenkov A.S. // Refract. Ind. Ceram. 2022. V. 63. № 2. P. 215. https://doi.org/10.1007/S11148-022-00709-6
  24. Арлашкин И.Е., Перевислов С.Н. // Материаловедение. 2023. № 6. С. 16. https://doi.org/10.31044/1684-579X-2023-0-6-16-21
  25. Arlashkin I.E., Perevislov S.N., Stolyarova V.L. // Russ. J. Gen. Chem. 2023. V. 93. № 4. P. 881. https://doi.org/10.1134/S107036322304014X
  26. Perevislov S.N., Arlashkin I.E., Stolyarova V.L. // J. Am. Ceram. Soc. 2023. V. 107. P. 488. https://doi.org/10.1111/jace.19419
  27. Hilpert K. // Rapid Commun. Mass Spectrom. 1991. V. 5. № 4. P. 175. https://doi.org/10.1002/rcm.1290050408
  28. Drowart J., Chatillon C., Hastie J. et al. // Pure Appl. Chem. 2005. V. 77. № 4. P. 683. https://doi.org/10.1351/pac200577040683
  29. Lopatin S.I., Shugurov S.M., Tyurnina Z.G. et al. // Glass Phys. Chem. 2021. V. 47. № 1. P. 38. https://doi.org/10.1134/S1087659621010077
  30. Lopatin S.I. // Glass Phys. Chem. 2022. V. 48. № 2. P. 117. https://doi.org/10.1134/S1087659622020055
  31. Paule R.C., Mandel J. // Pure Appl. Chem. 1972. V. 31. № 3. P. 371. https://doi.org/10.1351/pac197231030371
  32. Mann J.B. // J. Chem. Phys. 1967. V. 46. № 5. P. 1646. https://doi.org/10.1063/1.1840917
  33. Meyer R.T., Lynch A.W. // High Temp. Sci. 1973. V. 5. № 3. P. 192.
  34. Lias S.G., Bartmess J.E., Liebman J.F. et al. // J. Phys. Chem. Ref. Data. 1988. V. 17. Suppl. 1. P. 861.

© Российская академия наук, 2024

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах