Исследование структуры и свойств магнитных нанопорошков твердых растворов магнетит-маггемитового ряда методом МУРПН

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Осаждением из водных растворов и золь-гель методом синтезированы нанопорошки магнетит-маггемитового ряда и выполнено сравнительное комплексное исследование их структуры методами рентгенофазового анализа, растровой электронной микроскопии, низкотемпературной адсорбции азота и малоуглового рассеяния поляризованных нейтронов. Установлено, что полученные нанопорошки оксидов железа являются пористыми системами, обладающими в зависимости от метода синтеза одноуровневой, двухуровневой (для порошков, полученных водным синтезом) или трехуровневой (для порошков, полученных золь-гель методом) иерархической организацией структуры с разным масштабом и разным типом агрегации для каждого из структурных уровней, причем характерный размер для большего по размеру уровня в обоих случаях >45 нм. Выявлено, что магнитная структура полученных порошков оксидов железа независимо от метода синтеза состоит из суперпарамагнитных частиц с характерным радиусом магнитных RМ ~ 4 нм и магнитно-ядерных кросс-корреляций RMN ~ 3 нм для порошков, полученных золь-гель методом, и RM ~ 5–11 нм, RMN ~ 4–8 нм для порошков, полученных водным синтезом, в зависимости от условий получения.

Об авторах

О. А. Шилова

Институт химии силикатов им. И.В. Гребенщикова РАН

Автор, ответственный за переписку.
Email: olgashilova@bk.ru
Россия, Санкт-Петербург

А. С. Коваленко

Институт химии силикатов им. И.В. Гребенщикова РАН

Email: olgashilova@bk.ru
Россия, Санкт-Петербург

А. М. Николаев

Институт химии силикатов им. И.В. Гребенщикова РАН

Email: olgashilova@bk.ru
Россия, Санкт-Петербург

Т. В. Хамова

Институт химии силикатов им. И.В. Гребенщикова РАН

Email: olgashilova@bk.ru
Россия, Санкт-Петербург

И. Ю. Кручинина

Институт химии силикатов им. И.В. Гребенщикова РАН

Email: olgashilova@bk.ru
Россия, Санкт-Петербург

Г. П. Копица

Институт химии силикатов им. И.В. Гребенщикова РАН; Петербургский институт ядерной физики им. Б.П. Константинова НИЦ "Курчатовский институт"

Email: olgashilova@bk.ru
Россия, Санкт-Петербург; Гатчина

Список литературы

  1. Ferreira M.I., Cova T., Paixão J.A. et al. // Woodhead Publishing Series in Electronic and Optical Materials. Magnetic Nanoparticle-Based Hybrid Materials. Woodhead Publ, 2021. P. 273. https://doi.org/10.1016/B978-0-12-823688-8.00033-8
  2. Imran M., Shaik A.H., Ansari A.R. et al. // RSC Adv. 2018. V. 8. № 25. P. 13970. https://doi.org/10.1039/C7RA13467C
  3. Rashid H., Mansoor M.A., Haider B. et al. // Sep. Sci. Technol. 2020. V. 55. № 6. P. 1207. https://doi.org/10.1080/01496395.2019.1585876
  4. Aphesteguy J.C., Kurlyandskaya G.V., Celis J.P. et al. // Mater. Chem. Phys. 2015. V. 161. Р. 243. https://doi.org/10.1016/j.matchemphys.2015.05.044
  5. Nazari M., Ghasemi N., Maddah H. et al. // J. Nanostruct. Chem. 2014. V. 4. № 2. P. 99. https://doi.org/10.1007/s40097-014-0099-9
  6. Ramos Guivar J.A., Martínez A.I., Anaya A.O. et al. // Adv. Nanopart. 2014. V. 3. № 3. P. 114. https://doi.org/10.4236/anp.2014.33016
  7. Fedorenko N.Yu., Abiev R.Sh., Kudryashova Yu.S. et al. // Ceram. Int. 2022. V. 48. № 9. P. 13006. https://doi.org/10.1016/j.ceramint.2022.01.174
  8. Шилова О.А., Николаев А.М., Коваленко А.С. и др. // Журн. неорган. химии. 2020. Т. 65. № 3. С. 398.
  9. Коваленко А.С., Шилова О.А., Николаев А.М. и др. // Коллоид. журнал. 2023. Т. 85. № 3. С. 319.
  10. Gopinath S., Philip J. // Mater. Chem. Phys. 2014. V. 145. № 1–2. P. 213. https://doi.org/10.1016/j.matchemphys.2014.02.005
  11. Zienkiewicz-Strzałka M., Skibińska M., Pikus S. // Nucl. Instrum. Methods., Sect. B. 2017. V. 411. P. 72. https://doi.org/10.1016/j.nimb.2017.03.028
  12. Nirschl H., Guo X. // Chem. Eng. Res. Des. 2018. V. 136. P. 431. https://doi.org/10.1016/j.cherd.2018.06.012
  13. Shilova O.A., Nikolaev A.M., Kovalenko A.S. et al. // Ceram. Int. 2021. V. 47. № 20. P. 28866. https://doi.org/10.1016/j.ceramint.2021.07.047
  14. Khamova T.V., Kopitsa G.P., Nikolaev A.M. et al. // Biointer. Res. Appl. Chem. 2021. V. 11. № 4. P. 12285. https://doi.org/10.33263/BRIAC114.1228512300
  15. Danks A.E., Hall S.R., Schnepp Z. // Mater. Horiz. 2016. V. 3. № 2. P. 91. https://doi.org/10.1039/c5mh00260e
  16. Okorokov A.I., Runov V.V. // Physica B. 2001. V. 297. № 1–4. P. 239. https://doi.org/10.1016/S0921-4526(00)00843-7
  17. Fitzsimmons M.R., Schuller I.K. // J. Magn. Magn. Mater. 2014. V. 350. P. 199. https://doi.org/10.1016/j.jmmm.2013.09.028
  18. Muhlbauer S., Honecker D., P´erigo E.A. et al. // Rev. Mod. Phys. 2019. V. 91. № 1. P. 015004. https://doi.org/10.1103/RevModPhys.91.015004
  19. Honecker D., Bersweiler M., Erokhin S. et al. // Nanoscale Adv. 2022. V. 4. № 4. P. 1026. https://doi.org/10.1039/D1NA00482D
  20. Lee S.H., Lee D.H., Jung H. et al. // Curr. Appl. Phys. 2015. V. 15. № 8. P. 915. https://doi.org/10.1016/j.cap.2015.04.003
  21. Bergenti I., Deriu A., Savini L. et al. // J. Magn. Magn. Mater. 2003. V. 262. № 1. P. 60. https://doi.org/10.1016/S0304-8853(03)00019-2
  22. Grigoriev S.V., Maleyev S.V., Okorokov A.I. et al. // Europhys. Lett. 2003. V. 63. № 1. Р. 56. https://doi.org/10.1209/epl/i2003-00477-3
  23. Khamova T.V., Shilova O.A., Gorshkova Yu.E. et al. // Nanosystems: Phys. Chem. Math. 2022. V. 13. № 4. P. 414. https://doi.org/10.17586/2220-8054-2022-13-4-414-429
  24. Рунов В.В., Бугров А.Н., Смыслов Р.Ю. и др. // Журн. неорган. химии. 2021. Т. 66. № 2. С. 229.
  25. Fu Z., Xiao Y., Feoktystov A. et al. // Nanoscale. 2016. V. 8. № 43. P. 18541. https://doi.org/10.1039/c6nr06275j
  26. Zákutná D., Nižňanský D., Barnsley L.C. et al. // Phys. Rev. X. 2020. V. 10. № 3. P. 031019. https://doi.org/10.1103/PhysRevX.10.031019
  27. Köhler T., Feoktystov A., Petracic O. et al. // Nanoscale. 2021. V. 13. № 4. P. 6965. https://doi.org/10.1039/d0nr08615k
  28. Chouhan R.S., Horvat M., Ahmed J. et al. // Cancers. 2021. V. 13. № 9. Р. 2213. https://doi.org/10.3390/cancers13092213
  29. Tran H.-V., Ngo N.M., Medhi R. et al. // Materials. 2022. V. 15. № 2. P. 503. https://doi.org/10.3390/ma15020503
  30. Kovalenko A.S., Nikolaev A.M., Khamova T.V. et al. // Glass Phys. Chem. 2021. V. 47. № 1. Р. 67. https://doi.org/10.1134/S1087659621070063
  31. Shilova O.A., Panova G.G., Nikolaev A.M. et al. // Lett. Appl. NanoBioScience. 2021. V. 10. № 2. P. 2215. https://doi.org/10.33263/LIANBS102.22152239
  32. Wang Y., Wang S., Xu M. et al. // Environ. Pollut. 2019. V. 249. P. 1011. https://doi.org/10.1016/j.envpol.2019.03.119
  33. Serpoush M., Kiyasatfar M., Ojaghi J. // Mater. Today: Proc. 2022. V. 65. Part 6. P. 2915. https://doi.org/10.1016/j.matpr.2022.06.441
  34. Turrina Ch., Klassen A., Milani D. et al. // Heliyon. 2023. V. 9. № 6. Р. e16487. https://doi.org/10.1016/j.heliyon.2023.e16487
  35. Baabu P.R.S., Kumar H.K., Gumpu M.B. et al. // Materials. 2023. V. 16. № 1. P. 59. https://doi.org/10.3390/ma16010059
  36. Ibarra J., Melendres J., Almada M. et al. // Mater. Res. Exp. 2015. V. 2. № 9. Р. 095010. https://doi.org/10.1088/2053-1591/2/9/095010
  37. Nasrazadani S., Raman A. // Corros. Sci. 1993. V. 34. № 8. P. 1355. https://doi.org/10.1016/0010-938X(93)90092-U
  38. Pecharroman C., Gonzalez-Carreno T., Iglesias J.E. // Phys. Chem. Miner. 1995. V. 22. P. 21. https://doi.org/10.1007/BF00202677
  39. Anthony J.W., Bideaux R.A., Bladh K.W. Magnetite. Handbook of mineralogy. Chantilly, VA: Mineralogical Society of America, 2018.
  40. Jülich Centre for Neutron Science, QtiKWS 2019. Available online: www.qtisas.com
  41. Жерновой А.И., Дьяченко С.В. // Журн. техн. физики. 2015. Т. 85. № 4. С. 118.
  42. Schaefer D.W., Justice R.S. // Macromolecules. 2007. V. 40. № 24. P. 8501. https://doi.org/10.1021/ma070356w
  43. Баранчиков А.Е., Копица Г.П., Ёров Х.Э. и др. // Журн. неорган. химии. 2021. Т. 66. № 6. С. 774.
  44. Koizumi S., Yue Z., Tomita Y. et al. // Eur. Phys. J. E. 2008. V. 26. № 1–2. P. 137. https://doi.org/10.1140/epje/i2007-10259-3
  45. Guinier A., Fournet G., Walker C.B., Yudowitch K.L. Small-Angle Scattering of X-rays. New York: Wiley, 1955.
  46. Beaucage G., Ulibarri T.A., Black E.P. et al. Hybrid Organic-Inorganic Composites / Eds. By Mark J. et al. ACS Symposium Series; American Chemical Society: Washington, DC, 1995.
  47. Štěpánek M., Matějíček P., Procházka K. et al. // Langmuir. 2011. V. 27. № 9. P. 5275. https://doi.org/10.1021/la200442s
  48. Bale H.D., Schmidt P.W. // Phys. Rev. Lett. 1984. V. 53. № 6. P. 596. https://doi.org/10.1103/PhysRevLett.53.596
  49. Beaucage G. // J. Appl. Crystallogr. 1995. V. 28. № 6. P. 717. https://doi.org/10.1107/S0021889895005292
  50. Ivanova L.A., Ustinovich K.B., Khamova T.V. et al. // Materials. 2020. V. 13. № 9. P. 2087. https://doi.org/10.3390/ma13092087
  51. Larsson P.T., Stevanic-Srndovic J., Roth S.V. et al. // Cellulose. 2022. V. 29. № 1. P. 117. https://doi.org/10.1007/s10570-021-04291-x
  52. Guild J.D., Knox S.T., Burholt S.B. et al. // Macromolecules. 2023. V. 56. № 16. P. 6426. https://doi.org/10.1021/acs.macromol.3c00585
  53. Porod G. // Kolloid-Zeitschrift. 1952. V. 125. № 1. P. 51. https://doi.org/10.1007/BF01519615
  54. Hammouda B. // J. Appl. Crystallogr. 2010. V. 43. № 4. P. 716. https://doi.org/10.1107/S0021889810015773
  55. Schmidt P.W., Avnir D., Levy D. et al. // J. Chem. Phys. 1991. V. 94. № 2. P. 1474. https://doi.org/10.1063/1.460006

© Российская академия наук, 2024

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах