Гидротермальный синтез силикатов кальция при извлечении фосфора из фосфорита

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Гидротермальным синтезом из фосфорита получены силикаты кальция с наноразмерной игольчатой структурой. В условиях автоклавной обработки фосфорита щелочным раствором в присутствии диоксида кремния при температуре 250°С из фосфорита извлекается фосфор в виде раствора фосфата натрия. Такой подход позволяет вовлечь в безотходную переработку сырье с низким содержанием фосфора за счет синтеза силикатов кальция, востребованных во многих отраслях промышленности. Полученные при этом растворы фосфатов пригодны для использования в сельском хозяйстве, а при соответствующей очистке – в пищевой промышленности. Определены режимы гидротермального синтеза: температура 250–300°С, время выщелачивания 3 ч, концентрация NaOH 150 кг/м3.

Об авторах

В. М. Скачков

Институт химии твердого тела УрО РАН

Email: skachkov@ihim.uran.ru
Россия, 620108, Екатеринбург, ул. Первомайская, 91

Л. А. Пасечник

Институт химии твердого тела УрО РАН

Email: skachkov@ihim.uran.ru
Россия, 620108, Екатеринбург, ул. Первомайская, 91

И. С. Медянкина

Институт химии твердого тела УрО РАН

Автор, ответственный за переписку.
Email: skachkov@ihim.uran.ru
Россия, 620108, Екатеринбург, ул. Первомайская, 91

Список литературы

  1. Мишагин К.А., Твердов И.Д., Готлиб Е.М. и др. // Южно-Сибирский научный вестник. 2022. Т. 43. № 3. С. 67.
  2. Готлиб Е.М., Ха Ф.Т.Н., Хасанова А.Р. и др. // Вестн. Белгородского гос. тех. ун-та им. В.Г. Шухова. 2021. № 1. С. 66. https://doi.org/10.34031/2071-7318-2021-6-1-66-73
  3. Данилова С.Н., Ярусова С.Б., Охлопкова А.А. и др. // Изв. ВУЗов. Химия и хим. технология. 2023. Т. 66. № 1. С. 105. https://doi.org/10.6060/ivkkt.20236601.6681
  4. Yarusova S.B., Somova S.N., Kharchenko U.V. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 8. P. 1135. https://doi.org/10.31857/S0044457X21080316
  5. Mishra C. // Proceedings of the technical sessions presented by the TMS Aluminum Committee at the TMS 2012 Annual Meeting & Exhibition, Orlando, Florida, USA March 11–15, 2012 (Light Metals 2012). New Jersey: Wiley John Wiley Sons, 2012. P. 207. https://doi.org/10.1002/9781118359259.ch37
  6. Боев Е.В., Исламутдинова А.А., Аминова Э.К. // Нанотехнологии в строительстве. 2021. Т. 13. № 6. С. 350. https://doi.org/10.15828/2075-8545-2021-13-6-350-357
  7. Акатьева Л.В., Иванов В.К., Гладун В.Д. и др. // Хим. технология. 2013. Т. 14. № 4. С. 199.
  8. Григорян К.Г., Арутюнян Г.А., Багинова Л.Г. и др. // Хим. технология. 2008. Т. 9. № 3. С. 101.
  9. Гладун В.Д., Холькин А.И., Акатьева JI.B. // Хим. технология. 2007. Т. 8. № 5. С. 201.
  10. Соколов Р.С. Химическая технология. М.: Гуманит. изд. центр “ВЛАДОС”, 2000. Т. 1. 368с.
  11. Мухортова Д.Д., Зубова Н.Г. // Сб. тр. IV Междунар. научно-практ. конф. Балаково, 2022. С. 87.
  12. Хуррамов Н.И., Нурмуродов Т.И., Эркаев А.У. // Universum: техн. науки. 2021. № 2–3. С. 71. https://doi.org/10.32743/UniTech.2021.83.2-3.71-76
  13. Репина Е.А., Христофорова И.А. // Дни науки студентов ИАСЭ. М., 2021. С. 216.
  14. Ершов В.А., Пименов С.Д. Электротермия фосфора. СПб.: Химия, 1996. 248с.
  15. Пат. РФ 2643049 (опубл. 2018). Устройство для получения и производства фосфорной кислоты из дыма, получаемого в процессе горения в печи.
  16. Новикова Д.А., Андреева А.Н., Колесникова Т.А. и др. // Развитие науки и образования в условиях мировой нестабильности: современные парадигмы, проблемы, пути решения. Материалы междунар. науч.-пр. конф. Ростов-на-Дону, 2021. С. 41.
  17. Долгова О.В., Матвеев А.А., Козачек А.В. // Вопр. совр. науки и практ. 2022. № 4 (86). С. 14. https://doi.org/10.17277/voprosy.2022.04.pp.014-021
  18. Современные проблемы экологии // Докл. XXIX Всерос. науч.-пр. конф. Тула, 2022. 257 с.
  19. U.S. Geological Survey. 2022. 202 p. https://doi.org/10.5066/P9KKMCP4
  20. U.S. Geological Survey. 2023. 210 p. https://doi.org/10.3133/mcs2023
  21. Соловьев А.В., Сидирова Ю.В. // Вестн. Рос. гос. агр. заочн. ун-та. 2022. № 40. С. 17.
  22. Жиляева Н.А., Елизарова В.И., Миронова Е.Ю. и др. // Журн. неорган. химии. 2023. Т. 68. № 3. С. 291. https://doi.org/10.31857/S0044457X22600918
  23. Седов В.А., Гляделова Я.Б., Асабина Е.А. и др. // Журн. неорган. химии. 2023. Т. 68. № 1. С. 96. https://doi.org/10.31857/S0044457X22601602
  24. Шапкин Н.П., Сурков М.В., Тутов М.В. и др. // Журн. неорган. химии. 2022. Т. 67. № 2. С. 230. https://doi.org/10.31857/S0044457X22020155
  25. Мамуров Б.А., Шамшидинов И.Т. // Universum: техн. науки. 2022. № 7–3. С. 13. https://doi.org/10.32743/UniTech.2022.100.7.14014
  26. Тронев И.В., Шейченко Е.Д., Разворотнева Л.С. и др. // Журн. неорган. химии. 2023. Т. 68. № 3. С. 318. https://doi.org/10.31857/S0044457X22601869
  27. Еловиков Д.П., Томкович М.В., Левин А.А. и др. // Журн. неорган. химии. 2022. Т. 67. № 6. С. 782. https://doi.org/10.31857/S0044457X2206006X
  28. Turaev D.Y., Pochitalkina I.A. // Theor. Found. Chem. Eng. 2022. V. 56. № 2. P. 252. https://doi.org/10.1134/S0040579522020142
  29. Макеев А.Б., Карташов П.М. // Тр. Ферсмановской науч. сессии ГИ КНЦ РАН. 2022. № 19. С. 206. https://doi.org/10.31241/FNS.2022.19.038

Дополнительные файлы


© В.М. Скачков, Л.А. Пасечник, И.С. Медянкина, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах