Коррекция компьютерной 3D-модели фазовой диаграммы системы LiCl–PrCl3–KCl по термограммам

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Построена трехмерная (3D) компьютерная модель изобарной фазовой диаграммы системы LiCl–PrCl3–KCl. Она собрана из 66 поверхностей и 27 фазовых областей, из них 31 поверхность и 14 фазовых областей вследствие ограниченной растворимости исходных хлоридов и их соединений вырождены в вертикали и вертикальные плоскости. Для улучшения качества 3D-модели использованы опубликованные экспериментальные изотермические разрезы и термограммы 33 солевых смесей. Полученные результаты можно использовать при совершенствовании технологии расплавно-солевого рафинирования отходов ядерного топлива.

Об авторах

В. П. Воробьева

Институт физического материаловедения СО РАН

Email: vvorobjeva@mail.ru
Россия, 670047, Улан-Удэ, ул. Сахьяновой, 6

А. Э. Зеленая

Институт физического материаловедения СО РАН

Email: vvorobjeva@mail.ru
Россия, 670047, Улан-Удэ, ул. Сахьяновой, 6

В. И. Луцык

Институт физического материаловедения СО РАН

Email: vvorobjeva@mail.ru
Россия, 670047, Улан-Удэ, ул. Сахьяновой, 6

М. Д. Парфенова

Институт физического материаловедения СО РАН

Email: vvorobjeva@mail.ru
Россия, 670047, Улан-Удэ, ул. Сахьяновой, 6

В. Д. Балданов

Институт физического материаловедения СО РАН

Автор, ответственный за переписку.
Email: vvorobjeva@mail.ru
Россия, 670047, Улан-Удэ, ул. Сахьяновой, 6

Список литературы

  1. Басин А.С., Каплун А.Б., Мешалкин А.Б. и др. // Журн. неорган. химии. 2008. Т. 53. № 9. С. 1611. https://doi.org/10.1134/S003602360809026X
  2. Жемчужный С., Рамбах Ф. // Изв. С.-Петербург. политехн. ин-та. 1909. Т. 12. № 1. С. 349.
  3. Elchardus E., Laffitte P. // Bull. Soc. Chim. Fr. 1932. V. 51. P. 1572.
  4. Бухалова Г.А., Бурлакова В.М. // Журн. неорган. химии. 1966. Т. 11. С. 164.
  5. Моисеенко Ж.Г., Акопов Е.К., Паниева Л.А. // Журн. неорган. химии. 1972. Т. 17. № 11. С. 3098.
  6. Сафонов А.А., Труш Ф.Ф., Нахшин М.Ю. и др. // Журн. неорган. химии. 1983. Т. 28. С. 1344.
  7. Бухалова Г.А., Ягубьян Е.С., Мирcоянова Н.Н. // Журн. неорган. химии. 1986. Т. 31. С. 279.
  8. Korin E., Soifer L. // J. Therm. Anal. 1997. V. 50. P. 347.
  9. Adachi A., Katayama Y., Miura T. et al. // J. Power Sources. 1997. V. 68. № 2. P. 348. https://doi.org/10.1016/S0378-7753(97)02587-1
  10. Shirai O., Iizuka M., Iwai T. et al. // J. Electroanal. Chem. 2000. V. 490. P. 31. https://doi.org/10.1016/S0022-0728(00)00193-5
  11. Laidler J.J., Battles J.E., Miller W.E. et al. // Prog. Nucl. Energy. 1997. V. 31. № 1–2. P. 131. https://doi.org/10.1016/0149-1970(96)00007-8
  12. Masset P., Konings R.J.M., Malmbeck R. et al. // J. Nucl. Mater. 2005. V. 344. P. 173. https://doi.org/10.1016/j.jnucmat.2005.04.038
  13. Murakami T., Rodrigues A., Ougier M. et al. // J. Nucl. Mater. 2015. V. 466. P. 502. https://doi.org/10.1016/j.jnucmat.2015.08.045
  14. Gutknecht T.Y., Fredrickson G.L. Thermal Characterization of Molten Salt Systems. Idaho National Laboratory, 2011. 86 p.
  15. Galashev A.Y. // Int. J. Energy Res. 2020. V. 45. № 8. P. 11459. https://doi.org/10.1002/er.6267
  16. Ding L., Yan Y., Smolenski V. et al. // Sep. Purif. Technol. 2021. V. 279. P. 119683. https://doi.org/10.1016/j.seppur.2021.119683
  17. Li Z., Tang D., Meng S. et al. // Sep. Purif. Technol. 2021. V. 276. P. 119045. https://doi.org/10.1016/j.seppur.2021.119045
  18. Kim I.S., Okamoto Y. // Japan Atomic Energy Research Institute JAERI-Research 99-033. 1999. 16 p.
  19. Qiao Z., Wang M., Zheng C. et al. // J. Chin. Rare Earth Soc. 1989. V. 7. P. 16.
  20. Qiao Z., Wang M., Zheng C. et al. // Acta Metall. Sin. B. 1989. V. 25. P. 234.
  21. Gong W., Gaune-Escard M., Rycerz L. // J. Alloys Compd. 2005. V. 396. P. 92. https://doi.org/10.1016/j.jallcom.2004.12.021
  22. Ghosh S. Thermochemical Studies of Alloys and Molten Halide Salts of Relevance to Pyrochemical Reprocessing of Metallic Fuel. PhD, Diss. Kalpakkam, Tamil Nadu, India. 2016. 201 p.
  23. Ghosh S., Ganesan R., Sridharan R. et al. // Thermochim. Acta. 2017. V. 653. P. 16. https://doi.org/10.1016/j.tca.2017.03.024
  24. Seifert H.J., Sandrock J., Uebach J. // Z. Anorg. Allg. Chem. 1987. V. 555. P. 143. https://doi.org/10.1002/zaac.19875551215
  25. Seifert H.J. // J. Therm. Anal. Calorim. 2002. V. 67. P. 789. https://doi.org/10.1023/A:1014341829611
  26. Gaune-Escard M., Rycerz L., Szczepaniak W. et al. // J. Alloys Compd. 1994. V. 204. № 1–2. P. 189. https://doi.org/10.1016/0925-8388(94)90090-6
  27. Nakamura K., Kurata M. // J. Nucl. Mater. 1997. V. 247. P. 309. https://doi.org/10.1016/S0022-3115(97)00099-8
  28. Lutsyk V.I., Vorob’eva V.P. // J. Therm. Anal. Calorim. 2010. V. 101. № 1. P. 25. https://doi.org/10.1007/s10973-010-0855-0
  29. Воробьева В.П., Зеленая А.Э., Луцык В.И. // Журн. неорган. химии. 2021. Т. 66. № 6. С. 798. https://doi.org/10.31857/S0044457X21060222
  30. Lutsyk V.I., Zelenaya A.E., Zyryanov A.M. // J. Int. Sci. Publ.: Mater. Methods Technol. 2008. V. 2. P. 176.
  31. Prince A. Alloy Phase Equilibria. Amsterdam–London–New York: Elsevier Publ. Comp., 1966. 290 p.
  32. Райнз Ф. Диаграммы фазового равновесия в металлургии. М.: Гос. научно-технич. изд-во лит-ры по черной и цв. металлургии, 1960. 369 с.
  33. Халдояниди К.А. Фазовые диаграммы гетерогенных систем с трансформациями. Новосибирск: ИНХ СО РАН, 2004. 382 с.

Дополнительные файлы


© В.П. Воробьева, А.Э. Зеленая, В.И. Луцык, М.Д. Парфенова, В.Д. Балданов, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах