Correction of the 3D Computer Model of the Phase Diagram for the LiCl–PrCl3–KCl System Using Thermoanalytical Curves

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A spatial (3D) computer model of an isobaric phase diagram of the LiCl–PrCl3–KCl system was designed. The model was assembled of 66 surfaces and 27 phase regions, of which 31 surfaces and 14 phase regions degenerate to verticals or vertical planes because of the limited solubilities of the initial chlorides and their compounds. Published experimental isothermal sections and thermoanalytical curves for 33 salt melts were used to improve the quality of the 3D model. The results can be used to improve the molten-salt refining technology of nuclear fuel waste.

Sobre autores

V. Vorob’eva

Institute of Physical Materials Science, Siberian Branch of the Russian Academy of Sciences

Email: vvorobjeva@mail.ru
670047, Ulan-Ude, Russia

A. Zelenaya

Institute of Physical Materials Science, Siberian Branch of the Russian Academy of Sciences

Email: vvorobjeva@mail.ru
670047, Ulan-Ude, Russia

V. Lutsyk

Institute of Physical Materials Science, Siberian Branch of the Russian Academy of Sciences

Email: vvorobjeva@mail.ru
670047, Ulan-Ude, Russia

M. Parfenova

Institute of Physical Materials Science, Siberian Branch of the Russian Academy of Sciences

Email: vvorobjeva@mail.ru
670047, Ulan-Ude, Russia

V. Baldanov

Institute of Physical Materials Science, Siberian Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: vvorobjeva@mail.ru
670047, Ulan-Ude, Russia

Bibliografia

  1. Басин А.С., Каплун А.Б., Мешалкин А.Б. и др. // Журн. неорган. химии. 2008. Т. 53. № 9. С. 1611. https://doi.org/10.1134/S003602360809026X
  2. Жемчужный С., Рамбах Ф. // Изв. С.-Петербург. политехн. ин-та. 1909. Т. 12. № 1. С. 349.
  3. Elchardus E., Laffitte P. // Bull. Soc. Chim. Fr. 1932. V. 51. P. 1572.
  4. Бухалова Г.А., Бурлакова В.М. // Журн. неорган. химии. 1966. Т. 11. С. 164.
  5. Моисеенко Ж.Г., Акопов Е.К., Паниева Л.А. // Журн. неорган. химии. 1972. Т. 17. № 11. С. 3098.
  6. Сафонов А.А., Труш Ф.Ф., Нахшин М.Ю. и др. // Журн. неорган. химии. 1983. Т. 28. С. 1344.
  7. Бухалова Г.А., Ягубьян Е.С., Мирcоянова Н.Н. // Журн. неорган. химии. 1986. Т. 31. С. 279.
  8. Korin E., Soifer L. // J. Therm. Anal. 1997. V. 50. P. 347.
  9. Adachi A., Katayama Y., Miura T. et al. // J. Power Sources. 1997. V. 68. № 2. P. 348. https://doi.org/10.1016/S0378-7753(97)02587-1
  10. Shirai O., Iizuka M., Iwai T. et al. // J. Electroanal. Chem. 2000. V. 490. P. 31. https://doi.org/10.1016/S0022-0728(00)00193-5
  11. Laidler J.J., Battles J.E., Miller W.E. et al. // Prog. Nucl. Energy. 1997. V. 31. № 1–2. P. 131. https://doi.org/10.1016/0149-1970(96)00007-8
  12. Masset P., Konings R.J.M., Malmbeck R. et al. // J. Nucl. Mater. 2005. V. 344. P. 173. https://doi.org/10.1016/j.jnucmat.2005.04.038
  13. Murakami T., Rodrigues A., Ougier M. et al. // J. Nucl. Mater. 2015. V. 466. P. 502. https://doi.org/10.1016/j.jnucmat.2015.08.045
  14. Gutknecht T.Y., Fredrickson G.L. Thermal Characterization of Molten Salt Systems. Idaho National Laboratory, 2011. 86 p.
  15. Galashev A.Y. // Int. J. Energy Res. 2020. V. 45. № 8. P. 11459. https://doi.org/10.1002/er.6267
  16. Ding L., Yan Y., Smolenski V. et al. // Sep. Purif. Technol. 2021. V. 279. P. 119683. https://doi.org/10.1016/j.seppur.2021.119683
  17. Li Z., Tang D., Meng S. et al. // Sep. Purif. Technol. 2021. V. 276. P. 119045. https://doi.org/10.1016/j.seppur.2021.119045
  18. Kim I.S., Okamoto Y. // Japan Atomic Energy Research Institute JAERI-Research 99-033. 1999. 16 p.
  19. Qiao Z., Wang M., Zheng C. et al. // J. Chin. Rare Earth Soc. 1989. V. 7. P. 16.
  20. Qiao Z., Wang M., Zheng C. et al. // Acta Metall. Sin. B. 1989. V. 25. P. 234.
  21. Gong W., Gaune-Escard M., Rycerz L. // J. Alloys Compd. 2005. V. 396. P. 92. https://doi.org/10.1016/j.jallcom.2004.12.021
  22. Ghosh S. Thermochemical Studies of Alloys and Molten Halide Salts of Relevance to Pyrochemical Reprocessing of Metallic Fuel. PhD, Diss. Kalpakkam, Tamil Nadu, India. 2016. 201 p.
  23. Ghosh S., Ganesan R., Sridharan R. et al. // Thermochim. Acta. 2017. V. 653. P. 16. https://doi.org/10.1016/j.tca.2017.03.024
  24. Seifert H.J., Sandrock J., Uebach J. // Z. Anorg. Allg. Chem. 1987. V. 555. P. 143. https://doi.org/10.1002/zaac.19875551215
  25. Seifert H.J. // J. Therm. Anal. Calorim. 2002. V. 67. P. 789. https://doi.org/10.1023/A:1014341829611
  26. Gaune-Escard M., Rycerz L., Szczepaniak W. et al. // J. Alloys Compd. 1994. V. 204. № 1–2. P. 189. https://doi.org/10.1016/0925-8388(94)90090-6
  27. Nakamura K., Kurata M. // J. Nucl. Mater. 1997. V. 247. P. 309. https://doi.org/10.1016/S0022-3115(97)00099-8
  28. Lutsyk V.I., Vorob’eva V.P. // J. Therm. Anal. Calorim. 2010. V. 101. № 1. P. 25. https://doi.org/10.1007/s10973-010-0855-0
  29. Воробьева В.П., Зеленая А.Э., Луцык В.И. // Журн. неорган. химии. 2021. Т. 66. № 6. С. 798. https://doi.org/10.31857/S0044457X21060222
  30. Lutsyk V.I., Zelenaya A.E., Zyryanov A.M. // J. Int. Sci. Publ.: Mater. Methods Technol. 2008. V. 2. P. 176.
  31. Prince A. Alloy Phase Equilibria. Amsterdam–London–New York: Elsevier Publ. Comp., 1966. 290 p.
  32. Райнз Ф. Диаграммы фазового равновесия в металлургии. М.: Гос. научно-технич. изд-во лит-ры по черной и цв. металлургии, 1960. 369 с.
  33. Халдояниди К.А. Фазовые диаграммы гетерогенных систем с трансформациями. Новосибирск: ИНХ СО РАН, 2004. 382 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (101KB)
3.

Baixar (649KB)
4.

Baixar (102KB)
5.

Baixar (140KB)
6.

Baixar (118KB)
7.

Baixar (111KB)
8.

Baixar (502KB)

Declaração de direitos autorais © В.П. Воробьева, А.Э. Зеленая, В.И. Луцык, М.Д. Парфенова, В.Д. Балданов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies