Гексагональный борофен, стабилизированный натрием: структура, устойчивость, электронные и механические свойства

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

При помощи расчетов DFT исследована кристаллическая форма гексагонального борофена, допированного натрием (B2Na2). Расчеты предсказывают динамическую устойчивость B2Na2, структура которого представляет собой плоский сотовый борный лист, заключенный между двумя слоями натрия. Согласно оценкам электронных и механических свойств, B2Na2 является сравнительно мягким материалом с металлическими характеристиками. Оценка термостабильности методом молекулярной динамики указывает на достаточную стабильность прогнозируемого материала, что позволяет наблюдать его экспериментально при температурах ниже 200 K.

Об авторах

Д. В. Стегленко

Южный федеральный университет, Институт физической и органической химии

Email: dvsteglenko@sfedu.ru
Россия, 344090, Ростов-на-Дону, пр-т Стачки, 194/2

Т. Н. Грибанова

Южный федеральный университет, Институт физической и органической химии

Email: dvsteglenko@sfedu.ru
Россия, 344090, Ростов-на-Дону, пр-т Стачки, 194/2

Р. М. Миняев

Южный федеральный университет, Институт физической и органической химии

Email: dvsteglenko@sfedu.ru
Россия, 344090, Ростов-на-Дону, пр-т Стачки, 194/2

В. И. Минкин

Южный федеральный университет, Институт физической и органической химии

Автор, ответственный за переписку.
Email: dvsteglenko@sfedu.ru
Россия, 344090, Ростов-на-Дону, пр-т Стачки, 194/2

Список литературы

  1. Geim A.K., Novoselov K.S. // Nat. Mater. 2007. V. 6. P. 183. https://doi.org/10.1038/nmat1849
  2. Aufray B., Kara A., Vizzini S. et al. // Appl. Phys. Lett. 2010. V. 96. № 18. P. 183102. https://doi.org/10.1063/1.3419932
  3. Lalmi B., Oughaddou H., Enriquez H. et al. // Appl. Phys. Lett. 2010. V. 97. № 22. P. 223109. https://doi.org/10.1063/1.3524215
  4. Boustani I. // Phys. Rev. B: Condens. Matter Mater. Phys. 1997. V. 55. № 24. P. 16426. https://doi.org/10.1103/PhysRevB.55.16426
  5. Lau K.C., Pandey R. // J. Phys. Chem. C. 2007. V. 111. № 7. P. 2906. https://doi.org/10.1021/jp066719w
  6. Lau K.C., Pandey R. // J. Phys. Chem. B. 2008. V. 112. № 33. P. 10217. https://doi.org/10.1021/jp8052357
  7. Zhang L.Z., Yan Q.B., Du S.X. et al. // J. Phys. Chem. C. 2012. V. 116. № 34. P. 18202. https://doi.org/10.1021/jp303616d
  8. Liu H., Gao J., Zhao J. // Sci. Rep. 2013. V. 3. № 1. P. 3238. https://doi.org/10.1038/srep03238
  9. Liu Y., Penev E.S., Yakobson B.I. // Angew. Chem., Int. Ed. 2013. V. 52. № 11. P. 3156. https://doi.org/10.1002/anie.201207972
  10. Zhang Z., Yang Y., Gao G. et al. // Angew. Chem., Int. Ed. 2015. V. 54. № 44. P. 13022. https://doi.org/10.1002/anie.201505425
  11. Mannix A.J., Zhou X.-F., Kiraly B. et al. // Science. 2015. V. 350. № 6267. P. 1513. https://doi.org/10.1126/science.aad1080
  12. Feng B., Zhang J., Zhong Q. et al. // Nat. Chem. 2016. V. 8. № 6. P. 563. https://doi.org/10.1038/nchem.2491
  13. Wu R., Gozar A., Božović I. // npj Quantum Materials. 2019. V. 4. № 1. P. 40. https://doi.org/10.1038/s41535-019-0181-0
  14. Wu R., Drozdov I.K., Eltinge S. et al. // Nat. Nanotechnol. 2019. V. 14. № 1. P. 44. https://doi.org/10.1038/s41565-018-0317-6
  15. Kiraly B., Liu X., Wang L. et al. // ACS Nano. 2019. V. 13. № 4. P. 3816. https://doi.org/10.1021/acsnano.8b09339
  16. Li W., Kong L., Chen C. et al. // Science Bulletin. 2018. V. 63. № 5. P. 282. https://doi.org/10.1016/j.scib.2018.02.006
  17. Zhu L., Zhao B., Zhang T. et al. // J. Phys. Chem. C. 2019. V. 123. № 23. P. 14858. https://doi.org/10.1021/acs.jpcc.9b03447
  18. Shirodkar S.N., Penev E.S., Yakobson B.I. // Science Bulletin. 2018. V. 63. № 5. P. 270. https://doi.org/10.1016/j.scib.2018.02.019
  19. Zhang Z., Shirodkar S.N., Yang Y. et al. // Angew. Chem., Int. Ed. 2017. V. 56. № 48. P. 15421. https://doi.org/10.1002/anie.201705459
  20. Wang Z.-Q., Lü T.-Y., Wang H.-Q. et al. // Front. Phys. 2019. V. 14. № 3. P. 33403. https://doi.org/10.1007/s11467-019-0884-5
  21. Zhang Z., Yang Y., Penev E.S. et al. // Adv. Funct. Mater. 2017. V. 27. № 9. P. 1605059. https://doi.org/10.1002/adfm.201605059
  22. Mannix A.J., Zhang Z., Guisinger N.P. et al. // Nat. Nanotechnol. 2018. V. 13. № 6. P. 444. https://doi.org/10.1038/s41565-018-0157-4
  23. Zhang Z., Penev E.S., Yakobson B.I. // Chem. Soc. Rev. 2017. V. 46. № 22. P. 6746. https://doi.org/10.1039/c7cs00261k
  24. Xie S.-Y., Wang Y., Li X.-B. // Adv. Mater. 2019. V. 31. № 36. P. 1900392. https://doi.org/10.1002/adma.201900392
  25. Gribanova T.N., Minyaev R.M., Minkin V.I. et al. // Struct. Chem. 2020. V. 31. № 6. P. 2105. https://doi.org/10.1007/s11224-020-01606-9
  26. Xie Z., Meng X., Li X. et al. // Research. 2020. V. 2020. P. 2624617. https://doi.org/10.34133/2020/2624617
  27. Zhang X., Hu J., Cheng Y. et al. // Nanoscale. 2016. V. 8. № 33. P. 15340. https://doi.org/10.1039/c6nr04186h
  28. Banerjee S., Periyasamy G., Pati S.K. // J. Mater. Chem. A. 2014. V. 2. № 11. P. 3856. https://doi.org/10.1039/c3ta14041e
  29. Jiang H.R., Lu Z., Wu M.C. et al. // Nano Energy. 2016. V. 23. P. 97. https://doi.org/https://doi.org/10.1016/j.nanoen.20-16.03.013
  30. Haldar S., Mukherjee S., Singh C.V. // RSC Adv. 2018. V. 8. № 37. P. 20748. https://doi.org/10.1039/c7ra12512g
  31. Chen X., Wang L., Zhang W. et al. // Int. J. Hydrogen Energy. 2017. V. 42. № 31. P. 20036. https://doi.org/https://doi.org/10.1016/j.ijhydene.2017. 06.143
  32. Shi L., Ling C., Ouyang Y. et al. // Nanoscale. 2017. V. 9. № 2. P. 533. https://doi.org/10.1039/c6nr06621f
  33. Wang Y., Jiang X., Wang Y. et al. // Phys. Chem. 2021. V. 23. № 32. P. 17150. https://doi.org/10.1039/d1cp01708j
  34. John D., Nharangatt B., Chatanathodi R. // J. Mater. Chem. C. 2019. V. 7. № 37. P. 11493. https://doi.org/10.1039/c9tc03628h
  35. Malinina E.A., Avdeeva V.V., Goeva L.V. et al. // Russ. J. Inorg. Chem. 2010. V. 55. № 14. P. 2148. https://doi.org/10.1134/s0036023610140032
  36. Ionov S.P., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2011. V. 56. № 10. P. 1589. https://doi.org/10.1134/s0036023611100123
  37. Gribanova T.N., Minyaev R.M., Minkin V.I. // Struct. Chem. 2018. V. 29. № 1. P. 327. https://doi.org/10.1007/s11224-017-1031-y
  38. Kresse G., Hafner J. // Phys. Rev. B: Condens. Matter Mater. Phys. 1993. V. 47. № 1. P. 558. https://doi.org/10.1103/PhysRevB.47.558
  39. Kresse G., Hafner J. // Phys. Rev. B: Condens. Matter Mater. Phys. 1994. V. 49. № 20. P. 14251. https://doi.org/10.1103/PhysRevB.49.14251
  40. Kresse G., Furthmüller J. // Phys. Rev. B: Condens. Matter Mater. Phys. 1996. V. 54. № 16. P. 11169. https://doi.org/10.1103/PhysRevB.54.11169
  41. Kresse G., Furthmüller J. // Comput. Mater. Sci. 1996. V. 6. № 1. P. 15. https://doi.org/10.1016/0927-0256(96)00008-0
  42. Perdew J.P., Ruzsinszky A., Csonka G.I. et al. // Phys. Rev. Lett. 2008. V. 100. № 13. P. 136406. https://doi.org/10.1103/PhysRevLett.100.136406
  43. Blöchl P.E. // Phys. Rev. B: Condens. Matter Mater. Phys. 1994. V. 50. № 24. P. 17953. https://doi.org/10.1103/PhysRevB.50.17953
  44. Kresse G., Joubert D. // Phys. Rev. B: Condens. Matter Mater. Phys. 1999. V. 59. № 3. P. 1758. https://doi.org/10.1103/PhysRevB.59.1758
  45. Monkhorst H.J., Pack J.D. // Phys. Rev. B: Condens. Matter Mater. Phys. 1976. V. 13. № 12. P. 5188. https://doi.org/10.1103/PhysRevB.13.5188
  46. Togo A., Tanaka I. // Scr. Mater. 2015. V. 108. P. 1. https://doi.org/10.1016/j.scriptamat.2015.07.021
  47. Nosé S. // J. Chem. Phys. 1984. V. 81. № 1. P. 511. https://doi.org/10.1063/1.447334
  48. Koichi M., Fujio I. // J. Appl. Crystallogr. 2011. V. 44. № 6. P. 1272. 10.1107/S0021889811038970' target='_blank'>https://doi.org/doi: 10.1107/S0021889811038970
  49. Emsley J. The elements / written and compiled by John Emsley, Oxford [Oxfordshire]: Clarendon Press, 1991. 2nd ed.
  50. Mouhat F., Coudert F.-X. // Phys. Rev. B: Condens. Matter Mater. Phys. 2014. V. 90. № 22. P. 224104. https://doi.org/10.1103/PhysRevB.90.224104
  51. Lubarda V.A., Chen M.C. // J. Mech. Mater. Struct. 2008. V. 3. № 1. P. 153.https://doi.org/10.2140/jomms.2008.3.153
  52. Wei X., Fragneaud B., Marianetti C.A. et al. // Phys. Rev. B: Condens. Matter Mater. Phys. 2009. V. 80. № 20. P. 205407. https://doi.org/10.1103/PhysRevB.80.205407
  53. Cadelano E., Palla P.L., Giordano S. et al. // Phys. Rev. B: Condens. Matter Mater. Phys. 2010. V. 82. № 23. P. 235414. https://doi.org/10.1103/PhysRevB.82.235414
  54. Kudin K.N., Scuseria G.E., Yakobson B.I. // Phys. Rev. B: Condens. Matter Mater. Phys. 2001. V. 64. № 23. P. 235406. https://doi.org/10.1103/PhysRevB.64.235406
  55. Lee C., Wei X., Kysar J.W. et al. // Science. 2008. V. 321. № 5887. P. 385. https://doi.org/10.1126/science.1157996
  56. Falin A., Cai Q., Santos E.J.G. et al. // Nat. Commun. 2017. V. 8. № 1. P. 15815. https://doi.org/10.1038/ncomms15815
  57. Li J., Wei Y., Fan X. et al. // J. Mater. Chem. C. 2016. V. 4. № 40. P. 9613. https://doi.org/10.1039/c6tc03710k
  58. Li J., Fan X., Wei Y. et al. // J. Mater. Chem. C. 2016. V. 4. № 46. P. 10866. https://doi.org/10.1039/c6tc03584a
  59. Yan L., Bo T., Zhang W. et al. // Phys. Chem. Chem. Phys. 2019. V. 21. № 28. P. 15327. https://doi.org/10.1039/c9cp02727k
  60. Bertolazzi S., Brivio J., Kis A. // ACS Nano. 2011. V. 5. № 12. P. 9703. https://doi.org/10.1021/nn203879f
  61. Cooper R.C., Lee C., Marianetti C.A. et al. // Phys. Rev. B: Condens. Matter Mater. Phys. 2013. V. 87. № 3. P. 035423. https://doi.org/10.1103/PhysRevB.87.035423
  62. Şahin H., Cahangirov S., Topsakal M. et al. // Phys. Rev. B: Condens. Matter Mater. Phys. 2009. V. 80. № 15. P. 155453. https://doi.org/10.1103/PhysRevB.80.155453
  63. Tang J.-P., Xiao W.-Z., Wang L.-L. // Mater. Sci. Eng., B. 2018. V. 228. P. 206. https://doi.org/10.1016/j.mseb.2017.12.003
  64. Yang L.-M., Bačić V., Popov I.A. et al. // J. Am. Chem. Soc. 2015. V. 137. № 7. P. 2757. https://doi.org/10.1021/ja513209c
  65. Drummond N.D., Zólyomi V., Fal’ko V.I. // Phys. Rev. B: Condens. Matter Mater. Phys. 2012. V. 85. № 7. P. 075423. https://doi.org/10.1103/PhysRevB.85.075423
  66. Dávila M.E., Xian L., Cahangirov S. et al. // New J. Phys. 2014. V. 16. № 9. P. 095002. https://doi.org/10.1088/1367-2630/16/9/095002
  67. Ding J., Xu M., Guan P.F. et al. // J. Chem. Phys. 2014. V. 140. № 6. P. 064501. https://doi.org/10.1063/1.4864106
  68. Sun J., Liu P., Wang M. et al. // Sci. Rep. 2020. V. 10. № 1. P. 3408. https://doi.org/10.1038/s41598-020-60416-5
  69. Klintenberg M., Lebègue S., Ortiz C. et al. // J. Phys.: Condens. Matter. 2009. V. 21. № 33. P. 335502. https://doi.org/10.1088/0953-8984/21/33/335502
  70. Peng Q., Ji W., De S. // Comput. Mater. Sci. 2012. V. 56. P. 11. https://doi.org/10.1016/j.commatsci.2011.12.029
  71. Peng Q., Wen X., De S. // RSC Adv. 2013. V. 3. № 33. P. 13772. https://doi.org/10.1039/c3ra41347k
  72. Andrew R.C., Mapasha R.E., Ukpong A.M. et al. // Phys. Rev. B: Condens. Matter Mater. Phys. 2012. V. 85. № 12. P. 125428. https://doi.org/10.1103/PhysRevB.85.125428

Дополнительные файлы


© Д.В. Стегленко, Т.Н. Грибанова, Р.М. Миняев, В.И. Минкин, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах