Новый метод синтеза слоистого гидроксида европия с использованием оксида пропилена в качестве осадителя

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Разработан новый метод синтеза слоистого гидроксохлорида европия с выходом до 90%, основанный на гидролизе хлорида европия в присутствии оксида пропилена. Проанализировано влияние температуры проведения реакции на выход и состав продуктов гидролиза хлорида европия в присутствии оксида пропилена. Показано, что полученный слоистый гидроксохлорид европия обладает выраженными анионообменными свойствами. Впервые продемонстрирована возможность интеркаляции изоникотинат-аниона в слоистые гидроксиды РЗЭ. Интеркаляция бензоат- и изоникотинат-анионов в слоистые гидроксиды европия приводит к сенсибилизации люминесценции и снижению локальной симметрии Eu3+.

Об авторах

Е. Д. Шейченко

Институт общей и неорганической химии им. Н.С. Курнакова; Национальный исследовательский университет “Высшая школа экономики”

Email: a.baranchikov@yandex.ru
Россия, 119991, Москва, Ленинский пр-т, 31; Россия, 101000, Москва, ул. Мясницкая, 20

А. Д. Япрынцев

Институт общей и неорганической химии им. Н.С. Курнакова

Email: a.baranchikov@yandex.ru
Россия, 119991, Москва, Ленинский пр-т, 31

А. А. Родина

Институт общей и неорганической химии им. Н.С. Курнакова

Email: a.baranchikov@yandex.ru
Россия, 119991, Москва, Ленинский пр-т, 31

А. Е. Баранчиков

Институт общей и неорганической химии им. Н.С. Курнакова

Email: a.baranchikov@yandex.ru
Россия, 119991, Москва, Ленинский пр-т, 31

В. К. Иванов

Институт общей и неорганической химии им. Н.С. Курнакова; Московский государственный университет им. М.В. Ломоносова

Автор, ответственный за переписку.
Email: a.baranchikov@yandex.ru
Россия, 119991, Москва, Ленинский пр-т, 31; Россия, 119991, Москва, Ленинские горы, 1

Список литературы

  1. Gándara F., Perles J., Snejko N. et al. // Angew. Chem. – Int. Ed. 2006. V. 45. № 47. P. 7998. https://doi.org/10.1002/anie.200602502
  2. Liang J., Ma R., Sasaki T. // Photofunctional Layered Materials. 2015. https://doi.org/10.1007/978-3-319-16991-0_2
  3. Wu L., Gao C., Li Z. et al. // J. Mater. Chem. C. 2017. V. 5. № 21. P. 5207. https://doi.org/10.1039/c7tc01246b
  4. Wu L., Chen G., Li Z. // Small. 2017. V. 13. № 23. P. 1. https://doi.org/10.1002/smll.201604070
  5. Liu L., Yu M., Zhang J. et al. // J. Mater. Chem. C. 2015. V. 3. № 10. P. 2326. https://doi.org/10.1039/c4tc02760d
  6. Shen T., Zhang Y., Liu W. et al. // J. Mater. Chem. C. 2015. V. 3. № 8. P. 1807. https://doi.org/10.1039/c4tc02583k
  7. Lee B. Il, Jeong H., Byeon S.H. // Chem. Commun. 2013. V. 49. № 97. P. 11397. https://doi.org/10.1039/c3cc46609d
  8. Steblevskaya N.I., Belobeletskaya M.V., Yarovaya T.P. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 4. P. 415. https://doi.org/10.1134/S0036023622040180
  9. Xiang Y., Yu X.F., He D.F. et al. // Adv. Funct. Mater. 2011. V. 21. № 22. P. 4388. https://doi.org/10.1002/adfm.201101808
  10. Lee B. Il, Lee K.S., Lee J.H. et al. // Dalton Trans. 2009. № 14. P. 2490. https://doi.org/10.1039/b823172a
  11. Yoon Y.S., Lee B.L., Lee K.S. et al. // Adv. Funct. Mater. 2009. V. 19. № 21. P. 3375. https://doi.org/10.1002/adfm.200901051
  12. Yoon Y.S., Lee B. Il, Lee K.S. et al. // Chem. Commun. 2010. V. 46. № 21. P. 3654. https://doi.org/10.1039/b927570c
  13. Geng F., Xin H., Matsushita Y. et al. // Chem. – A Eur. J. 2008. V. 14. № 30. P. 9255. https://doi.org/10.1002/chem.200800127
  14. Yapryntsev A.D., Baranchikov A.E., Ivanov V.K. // Russ. Chem. Rev. 2020. V. 89. № 6. P. 629. https://doi.org/10.1070/rcr4920
  15. Xu Y., Goyanes A., Wang Y. et al. // Dalton Trans. 2018. V. 47. № 9. P. 3166. https://doi.org/10.1039/c7dt03729e
  16. Frolova E.A., Kondakov D.F., Yapryntsev A.D. et al. // Russ. J. Inorg. Chem. 2015. V. 60. № 3. P. 259. https://doi.org/10.1134/S0036023615030043
  17. Hindocha S.A., McIntyre L.J., Fogg A.M. // J. Solid State Chem. 2009. V. 182. № 5. P. 1070. https://doi.org/10.1016/j.jssc.2009.01.039
  18. Willard H.H., Tang N.K. // J. Am. Chem. Soc. 1937. V. 59. № 7. P. 1190. https://doi.org/10.1021/ja01286a010
  19. Liang J., Ma R., Sasaki T. // Dalton Trans. 2014. V. 43. № 27. P. 10355. https://doi.org/10.1039/c4dt00425f
  20. Dolgopolova E.A., Ivanova O.S., Sharikov F.Y. et al. // Russ. J. Inorg. Chem. 2012. V. 57. № 10. P. 1303. https://doi.org/10.1134/S003602361210004X
  21. Yapryntsev A.D., Baranchikov A.E., Zabolotskaya A.V. et al. // Russ. J. Inorg. Chem. 2014. V. 59. № 12. P. 1383. https://doi.org/10.1134/S0036023614120286
  22. Rodina A.A., Yapryntsev A.D., Churakov A.V. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 2. P. 125. https://doi.org/10.1134/S0036023621020169
  23. Yapryntsev A.D., Skogareva L.S., Gol’dt A.E. et al. // Russ. J. Inorg. Chem. 2015. V. 60. № 9. P. 1027. https://doi.org/10.1134/S0036023615090211
  24. Geng F., Matsushita Y., Ma R. et al. // Inorg. Chem. 2009. V. 48. № 14. P. 6724. https://doi.org/10.1021/ic900669p
  25. Rao M.M., Reddy B.R., Jayalakshmi M. et al. // Mater. Res. Bull. 2005. V. 40. № 2. P. 347. https://doi.org/10.1016/j.materresbull.2004.10.007
  26. Bann B., Miller S.A. // Chem. Rev. 1958. V. 58. № 1. P. 131. https://doi.org/10.1021/cr50019a004
  27. Sharipov K.B., Yapryntsev A.D., Baranchikov A.E. et al. // Russ. J. Inorg. Chem. 2017. V. 62. № 2. P. 139. https://doi.org/10.1134/S0036023617020164
  28. Cui H., Zayat M., Levy D. // J. Sol-Gel Sci. Technol. 2005. V. 35. № 3. P. 175. https://doi.org/10.1007/s10971-005-4165-0
  29. Gash A.E., Tillotson T.M., Satcher J.H. et al. // J. Non. Cryst. Solids. 2001. V. 285. № 1–3. P. 22. https://doi.org/10.1016/S0022-3093(01)00427-6
  30. Gash A.E., Satcher J.H., Simpson R.L. // Chem. Mater. 2003. V. 15. № 17. P. 3268. https://doi.org/10.1021/cm034211p
  31. Wei T.Y., Chen C.H., Chang K.H. et al. // Chem. Mater. 2009. V. 21. № 14. P. 3228. https://doi.org/10.1021/cm9007365
  32. Cheng W., Rechberger F., Niederberger M. // ACS Nano. 2016. V. 10. № 2. P. 2467. https://doi.org/10.1021/acsnano.5b07301
  33. Eid J., Pierre A.C., Baret G. // J. Non. Cryst. Solids. 2005. V. 351. № 3. P. 218. https://doi.org/10.1016/j.jnoncrysol.2004.11.020
  34. Clapsaddle B.J., Neumann B., Wittstock A. et al. // J. Sol-Gel Sci. Technol. 2012. V. 64. № 2. P. 381. https://doi.org/10.1007/s10971-012-2868-6
  35. Leventis N., Vassilaras P., Fabrizio E.F. et al. // J. Mater. Chem. 2007. V. 17. № 15. P. 1502. https://doi.org/10.1039/b612625a
  36. Oestreicher V., Jobbágy M. // Langmuir. 2013. V. 29. № 39. P. 12104. https://doi.org/10.1021/la402260m
  37. Oestreicher V., Fábregas I., Jobbágy M. // J. Phys. Chem. C. 2014. V. 118. № 51. P. 30274. https://doi.org/10.1021/jp510341q
  38. Oestreicher V., Jobbágy M. // Chem. – A Eur. J. 2019. V. 25. № 54. P. 12611. https://doi.org/10.1002/chem.201902627
  39. Du A., Zhou B., Zhang Z. et al. // Materials (Basel). 2013. V. 6. № 3. P. 941. https://doi.org/10.3390/ma6030941
  40. Fritz J.S., Oliver R.T., Pietrzyk D.J. // Anal. Chem. 1958. V. 30. № 6. P. 1111. https://doi.org/10.1021/ac60138a032
  41. Long F.A., Pritchard J.G. // J. Am. Chem. Soc. 1956. V. 78. № 12. P. 2663. https://doi.org/10.1021/ja01593a001
  42. Sakuma K., Fujihara S. // J. Ceram. Process. Res. 2013. V. 14. P. 26. https://www.applc.keio.ac.jp/~shinobu/150.pdf
  43. Yapryntsev A., Abdusatorov B., Yakushev I. et al. // Dalton Trans. 2019. V. 48. № 18. P. 6111. https://doi.org/10.1039/c9dt00390h
  44. Chernyshova A.V., Nikolaev A.A., Kolokolov F.A. et al. // Russ. J. Gen. Chem. 2021. V. 91. № 6. P. 1063. https://doi.org/10.1134/S1070363221060128
  45. Poudret L., Prior T.J., McIntyre L.J. et al. // Chem. Mater. 2008. V. 20. № 24. P. 7447. https://doi.org/10.1021/cm802301a
  46. Kirchhoefer R.D. // J. AOAC Int. 1994. V. 77. № 3. P. 587. https://doi.org/10.1093/jaoac/77.3.587
  47. Su F., Liu C., Yang Y. et al. // Mater. Res. Bull. 2017. V. 88. P. 301. https://doi.org/10.1016/j.materresbull.2017.01.008
  48. Sun Y., Chu N., Gu Q. et al. // Eur. J. Inorg. Chem. 2013. № 1. P. 32. https://doi.org/10.1002/ejic.201201048
  49. Utochnikova V.V., Kuzmina N.P. // Russ. J. Coord. Chem. 2016. V. 42. № 10. P. 679. https://doi.org/10.1134/S1070328416090074

© Е.Д. Шейченко, А.Д. Япрынцев, А.А. Родина, А.Е. Баранчиков, В.К. Иванов, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».