Synthesis of nanosized SnO2 via chemical precipitation followed by hydrothermal treatment using tin(II) acetate

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The paper studies the synthesis process of nanosized tin dioxide obtained by a combination of direct chemical precipitation and hydrothermal treatment using tin(II) acetate as a precursor. A comparative analysis of the chemical composition, microstructure and crystal structure of the samples obtained under different conditions is performed. Thus, the thermal behavior of the obtained powders in the temperature range of 25–1000°C was studied using synchronous thermal analysis (TGA/DSC); the set of functional groups in the powders was studied using IR spectroscopy; X-ray diffraction analysis (XRD) was used to study the crystal structure of the powders and determine the size of the coherent scattering region. Using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), the effect of hydrothermal treatment on the size of primary particles and agglomerates formed on their basis is shown. It was found that during hydrothermal treatment, the primary particles enlarge from 2.2 ± 0.4 to 2.6 ± 0.6 nm, while the microstructure of the samples becomes more uniform and the size of the agglomerates decreases from 42 ± 12 to 40 ± 8 nm. The morphology of the films formed using the obtained nanopowders was studied using atomic force microscopy (AFM). Within the framework of AFM, Kelvin probe force microscopy (KPFM) was used to construct surface potential distribution maps, as well as to estimate the electron work function from the surface of the materials.

Авторлар туралы

N. Fisenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: fisenkonk@yandex.ru
Moscow, Russia

P. Dementieva

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; National Research University "Higher School of Economics"

Moscow, Russia; Moscow, Russia

N. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Moscow, Russia

Ph. Gorobtsov

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Moscow, Russia

T. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Moscow, Russia

E. Simonenko

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Moscow, Russia

Әдебиет тізімі

  1. Mokrushin A.S., Nagornov I.A., Gorban Y.M. et al. // J. Alloys Compd. 2024. V. 1009. P. 176856. https://doi.org/10.1016/j.jallcom.2024.176856
  2. Fisenko N.A., Solomatov I.A., Simonenko N.P. et al. // Sensors. 2022. V. 22. № 24. P. 9800. https://doi.org/10.3390/s22249800
  3. Симоненко Е.П., Мокрушин А.С., Нагорнов И.А. и др. // Журн. неорган. химии. 2024. Т. 69. № 4. С. 634. https://doi.org/10.31857/S0044457X24040185
  4. Симоненко Т.Л., Дудорова Д.А., Симоненко Н.П. и др. // Журн. неорган. химии. 2023. Т. 68. № 12. С. 1849. https://doi.org/10.31857/S0044457X23601591
  5. Захарова Г.С., Фаттахова З.А., Трофимов А.А. // Журн. неорган. химии. 2024. Т. 69. С. 1785. https://doi.org/10.31857/S0044457X24120116
  6. Chen Y., Meng Q., Zhang L. et al. // J. Energy Chem. 2019. V. 35. P. 144. https://doi.org/10.1016/j.jechem.2018.11.011
  7. Dou M., Persson C. // J. Appl. Phys. 2013. V. 113. № 8. P. 83703. https://doi.org/10.1063/1.4793273
  8. Zhang X., Rui Y., Wang Y. et al. // J. Power Sources. 2018. V. 402. P. 460. https://doi.org/10.1016/j.jpowsour.2018.09.072
  9. Moustafid T.El., Cachet H., Tribollet B. et al. // Electrochimica Acta. 2002. V. 47. P. 1209. https://doi.org/10.1016/S0013-4686(01)00845-3
  10. Manifacier J.-C., Szepessy L., Bresse J.F. et al. // Mater. Res. Bull. 1979. V. 14. № 2. P. 757. https://doi.org/10.1051/rphysap:019780013012075700
  11. Wang A., Bushick K., Pant N. et al. // Appl. Phys. Lett. 2024. V. 124. № 17. P. 172103. https://doi.org/10.1063/5.0198885
  12. Gorley P.M., Khomyak V.V., Bilichuk S.V. et al. // Materials Science and Engineering: B. 2005. V. 118. № 1. P. 160. https://doi.org/10.1016/j.mseb.2004.12.026
  13. Erken Ö., Gümüş C. // Adıyaman University Journal of Science. 2018. V. 8. № 2. P. 141. https://dergipark.org.tr/en/pub/adyujsci/issue/42366/466133#article_cite
  14. Serin T., Serin N., Karadeniz S. et al. // J. Non-Cryst. Solids. 2006. V. 352. № 3. P. 209. https://doi.org/10.1016/j.jnoncrysol.2005.11.031
  15. Uematsu K., Mizutani N., Kato M. // J. Mater. Sci. 1987. V. 22. P. 915. https://doi.org/10.1007/BF01103529
  16. Boujnah M., Ennaceri H., Belasfar K. et al. // Proceedings of 2016 International Renewable and Sustainable Energy Conference. 2016. P. 229. https://doi.org/10.1109/IRSEC.2016.7983960
  17. Tadeev A.V., Delabouglise G., Labeau M. // Thin Solid Films. 1999. V. 337. № 1. P. 163. https://doi.org/10.1016/S0040-6090(98)01392-3
  18. Pandit N.A., Ahmad T. // Molecules. 2022. V. 27. № 20. P. 7038. https://doi.org/10.3390/molecules27207038
  19. He T., Liu W., Lv T. et al. // Sens. Actuators, B: Chem. 2021. V. 329. P. 129275. https://doi.org/10.1016/j.snb.2020.129275
  20. Choi M.S., Mirzaei A., Na H.G. et al. // Sens. Actuators, B: Chem. 2021. V. 340. P. 129984. https://doi.org/10.1016/j.snb.2021.129984
  21. Sharma B., Sharma A., Myung J.ha // Sens. Actuators, B: Chem. 2021. V. 331. P. 129464. https://doi.org/10.1016/j.snb.2021.129464
  22. Kedara Shivasharma T., Sahu R., Rath M.C. et al. // Chem. Eng. J. 2023. V. 477. P. 147191. https://doi.org/10.1016/j.cej.2023.147191
  23. Cao J., Zhao T., Li X. et al. // J. Energ. Storag. 2025. V. 131. P. 117582. https://doi.org/10.1016/j.est.2025.117582
  24. Yadava Y.P., Denicoló G., Arias A.C. et al. // Mater. Chem. Phys. 1997. V. 48. P. 263. https://doi.org/10.1016/s0254-0584(96)01899-8.
  25. Yu C., Zou Q., Wang Q. et al. // Nat. Energy. 2023. V. 8. № 10. P. 1119. https://doi.org/10.1038/s41560-023-01331-7
  26. Lee J.H., You Y.J., Saeed M.A. et al. // NPG Asia Mater. 2021. V. 13. № 1. P. 1. https://doi.org/10.1038/s41427-021-00310-2
  27. Dahl P.I., Barnett A.O., Monterrubio F.A. et al. // Tin Oxide Materials. 2020. P. 379. https://doi.org/10.1016/b978-0-12-815924-8.00013-x
  28. Andersen S.M., Nørgaard C.F., Larsen M.J. et al. // J. Power Sources. 2015. V. 273. P. 158. https://doi.org/10.1016/j.jpowsour.2014.09.051
  29. Cognard G., Ozouf G., Beauger C. et al. // Appl. Catal. B. 2017. V. 201. P. 381. https://doi.org/10.1016/j.apcatb.2016.08.010
  30. Ozouf G., Beauger C. // J. Mater. Sci. 2016. V. 51. № 11. P. 5305. https://doi.org/10.1007/s10853-016-9833-7
  31. Tsai D.C., Kuo B.H., Chen H.P. et al. // Sci. Rep. 2023. V. 13. № 1. P. 1. https://doi.org/10.1038/s41598-023-50080-w
  32. Tazikeh S., Akbari A., Talebi A. et al. // Mat. Science- Poland. 2014. V. 32. № 1. P. 98. https://doi.org/10.2478/s13536-013-0164-y
  33. Rifai A., Iqbal M., Nugraha et al. // AIP Conf. Proc. 2011. P. 231. https://doi.org/10.1063/1.3667263
  34. Shahzad N., Ali N., Shahid A. et al. // Dig. J. Nanomater. Biostruct. 2021. V. 16. № 1. P. 41. https://doi.org/10.15251/DJNB.2021.161.41
  35. Liu J.-H. et al. // International Journal on Smart Sensing and Intelligent Systems. Exeley Inc. 2012. V. 5. № 1. P. 191. https://doi.org/10.21307/IJSSIS-2017-477
  36. Acarbaş Ö., Suvaci E., Doǧan A. // Ceram. Int. 2007. V. 33. № 4. P. 537. https://doi.org/10.1016/j.ceramint.2005.10.024
  37. Kim K.W., Cho P.S., Lee J.H. et al. // J. Electroceram. 2006. V. 17. P. 895. https://doi.org/10.1007/s10832-006-7670-9
  38. Nagirnyak S.V., Lutz V.A., Dontsova T.A. et al. // Nanoscale Res. Lett. 2016. V. 11. № 343. P. 1. https://doi.org/10.1186/s11671-016-1547-x
  39. Zhao Y., Dong G., Duan L. et al. // RSC Adv. 2012. V. 2. № 12. P. 5307. https://doi.org/10.1039/c2ra00764a
  40. Agashe C., Aiyer R.C., Garaje A. // Int. J. Appl. Ceram. Technol. 2008. V. 5. № 2. P. 181. https://doi.org/10.1111/j.1744-7402.2008.02196.x
  41. Shaposhnik A.A., Sizask E.A., et al. // Сорбционные и хроматографические процессы. 2014. V. 14. № 4. P. 674.
  42. Agnieszka M., Majchrzycki Ł., Marciniak P. et al. // Chemik. 2013. V. 67. № 1. P. 1207.
  43. Moghadam M.B., Zebarjad S.M., Emampour J.S. et al. // Particulate Science and Technology. 2013. V. 31. № 1. P. 66. https://doi.org/10.1080/02726351.2011.647383
  44. Kim J.W., Choi J., Hong S.J. et al. // Journal of the Korean Physical Society. 2010. V. 57. № 61. P. 1794. https://doi.org/10.3938/jkps.57.1794
  45. Kirszensztejn P., Szymkowiak A., Marciniak P. et al. // Appl. Catal. A Gen. 2003. V. 245. № 1. P. 159. https://doi.org/10.1016/S0926-860X(02)00651-8
  46. Li J., Chen C., Li J. et al. // Journal of Materials Science: Materials in Electronics. 2020. V. 31. № 19. P. 16539. https://doi.org/10.1007/s10854-020-04208-7
  47. Amalric-Popescu D., Bozon-Verduraz F. // Catalysis Today. 2001. V. 70. № 1. P. 139. https://doi.org/10.1016/S0920-5861(01)00414-X
  48. Campo C.M., Rodríguez J.E., Ramírez A.E. // Heliyon. 2016. V. 2. № 5. P. 1. https://doi.org/10.1016/j.heliyon.2016.e00112
  49. Shahanshahi S.Z., Mosivand S. // Appl. Phys. A Mater. Sci. Process. 2019. V. 125. № 9. P. 1. https://doi.org/10.1007/s00339-019-2949-2
  50. Chandane W., Gajare S., Kagne R. et al. // Research on Chemical Intermediates. 2022. V. 48. № 4. P. 1439. https://doi.org/10.1007/s11164-022-04670-4
  51. Wang Q., Peng C., Du L. et al. // Adv. Mater. Interfaces. 2020. V. 7. № 4. P. 1901866. https://doi.org/10.1002/admi.201901866
  52. Gubbala S., Russell H.B., Shah H. et al. // Energ. Environ. Sci. 2009. V. 2. № 12. P. 1302. https://doi.org/10.1039/b910174h
  53. Fang X., Yan J., Hu L. et al. // Adv. Funct. Mater. 2012. V. 22. № 8. P. 1613. https://doi.org/10.1002/adfm.201102196

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».