Photoactive layers based on ZnO nanorods obtained by hydrothermal synthesis for dye-sensitized solar cells
- Autores: Averochkin E.P.1, Steparuk A.S.2, Tekshina E.V.3, Krupanova D.A.1,4, Emets V.V.5, Volkova L.S.1, Ryazanov R.M.1, Lebedev E.A.1, Kozyukhin S.A.3,6
-
Afiliações:
- National Research University of Electronic Technology
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- Moscow Institute of Physics and Technology (National Research University)
- Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
- Tomsk State University
- Edição: Volume 69, Nº 6 (2024)
- Páginas: 919-927
- Seção: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://journals.rcsi.science/0044-457X/article/view/273156
- DOI: https://doi.org/10.31857/S0044457X24060149
- EDN: https://elibrary.ru/XSSKMS
- ID: 273156
Citar
Resumo
The application of zinc oxide ZnO nanorods of different heights obtained by hydrothermal synthesis as functional layers for dye-sensitized solar cells has been considered. The structure, morphology, and optical properties of the nanorod layers were investigated by X-ray phase analysis, scanning electron microscopy, and optical spectroscopy. Photoanodes were fabricated using thieno[3,2-b]indole-based dyes IS 4 and IS 9. The adsorption mechanism of the dyes and ZnO structures was studied by IR spectroscopy. The efficiency of photoanodes was investigated using photoelectrochemical measurements. The dependence of the efficiency of the dye sensitized solar cells on the length of the nanorods was shown. The maximum light conversion result was obtained for a photoanode with an average nanorod height of 2.5 μm and dye adsorbed IS 4.
Palavras-chave
Texto integral

Sobre autores
E. Averochkin
National Research University of Electronic Technology
Autor responsável pela correspondência
Email: aep1997@rambler.ru
Rússia, Moscow, 124498
A. Steparuk
Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences
Email: aep1997@rambler.ru
Rússia, Ekaterinburg, 620137
E. Tekshina
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: aep1997@rambler.ru
Rússia, Moscow, 119991
D. Krupanova
National Research University of Electronic Technology; Moscow Institute of Physics and Technology (National Research University)
Email: aep1997@rambler.ru
Rússia, Moscow, 124498; Dolgoprudny, 141701
V. Emets
Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
Email: aep1997@rambler.ru
Rússia, Moscow, 119991
L. Volkova
National Research University of Electronic Technology
Email: aep1997@rambler.ru
Rússia, Moscow, 124498
R. Ryazanov
National Research University of Electronic Technology
Email: aep1997@rambler.ru
Rússia, Moscow, 124498
E. Lebedev
National Research University of Electronic Technology
Email: aep1997@rambler.ru
Rússia, Moscow, 124498
S. Kozyukhin
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; Tomsk State University
Email: aep1997@rambler.ru
Faculty of Chemistry
Rússia, Moscow, 119991; 49, Tomsk, 634050Bibliografia
- Kumar V., Gupta R., Bansal A. // ACS Appl. Nano Mater. 2021. V. 4. P. 6212. https://doi.org/10.1021/acsanm.1c01012
- Kim K.H., Utashiro K., Abe Y., Kawamura M. // Materials. 2014. V. 7(4). P. 2522. https://doi.org/10.3390/ma7042522
- Kumar R., Umar A., Kumar G. et al. // Mater. Sci. 2017. V. 52. P. 4743. https://doi.org/10.1007/s10853-016-0668-z
- Shah M.A. // Mod. Phys. Lett. B. 2008. V. 22. № 26. P. 2617. https://doi.org/10.1142/S0217984908017126
- Samanta P.K., Bandyopadhyay A.K. // Appl. Nanosci. 2012. V. 2. P. 111. https://doi.org/10.1007/s13204-011-0038-8
- Li X., Li R., Feng X. // Russ. J. Inorg. Chem. 2023. V. 68. P. 1386. https://doi.org/10.1134/s0036023623601307
- Bouarroudj T., Aoudjit L., Nessaibia I. et al. // Russ. J. Phys. Chem. A. 2023. V. 97. P. 1074. https://doi.org/10.1134/S0036024423050278
- Duangnet L., Phuruangrat A., Thongtem T. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 721. https://doi.org/10.1134/S0036023622050114
- Djurisic A.B., Chen X., Leung, Y.H. et al. // J. Mater. Chem. 2012. V. 22. P. 6526. https://doi.org/10.1039/c2jm15548f
- Guell F., Galdamez-Martinez A., Martinez-Alanis P.R. et al. // Mater. Adv. 2023. V. 4. P. 3685. https://doi.org/10.1039/D3MA00227F
- Mokrushin A.S., Gorban Y.M., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 2099. https://doi.org/10.1134/S0036023622601520
- Ulyankina A.A., Tsarenko A.D., Molodtsova T.A. et al. // Russ. J. Electrochem. 2023. V. 59. P. 1032. https://doi.org/10.1134/S1023193523120145
- Grätzel M. // Prog. Photovolt: Res. Appl. 2006. V. 14. № 5. P. 429. https://doi.org/10.1002/pip.712
- Grifoni F., Bonomo M., Naim W. et al. // Adv. Energy Mater. 2021. V. 11. P. 1. https://doi.org/10.1002/aenm.202101598
- Ahmad W., Mehmood U., Al-Ahmed A. et al. // Electrochim. Acta. 2016. V. 222. P. 473. https://doi.org/10.1016/j.electacta.2016.10.200
- Tiwana P., Docampo P., Johnston M.B. et al. // ACS Nano. 2011. V. 5. P. 5158. https://doi.org/10.1021/nn201243y
- Sufyan M., Mehmood U., Qayyum Gill Y. et al. // Mater. Lett. 2021. V. 297. P. 1. https://doi.org/10.1016/j.matlet.2021.130017
- Qu, J., Lai C. // J. Nanomater. 2013 V. 2013. P. 1. https://doi.org/10.1155/2013/762730
- Law M., Greene L.E., Johnson J.C. et al. // Nat. Mater. 2005. V. 4. P. 455. https://doi.org/10.1038/nmat1387
- Marimuthu T., Anandhan N. // AIP Conf. Proc. 2015. V. 1728. P. 020621-1. https://doi.org/10.1063/1.4946672
- Yodyingyong S., Zhang Q., Park K. et al. // Appl. Phys. Lett. 2010. V. 96. № 7. P. 073115-1. https://doi.org/10.1063/1.3327339
- Brown P., Takechi K., Kamat P.V. // J. Phys. Chem. C. 2008. V. 112. № 12. P. 4776. https://doi.org/10.1021/jp7107472
- Bharat T.C., Shubham, Mondal S. et al. // Mater. Today: Proc. 2019. V. 11. P. 767. https://doi.org/10.1016/j.matpr.2019.03.041
- Lin C.C., Li Y.Y. // Mater. Chem. Phys. 2009. V. 113. P. 334.
- Gan Y.X., Jayatissa A.H., Yu Z. et al. // J. Nanomater. 2020. V. 2020. P. 1. https://doi.org/10.1155/2020/8917013
- Edalati K., Shakiba A., Vahdati-Khaki J., Zebarjad S.M. // Mater. Res. Bull. 2016. V. 74. P. 374. https://doi.org/10.1016/j.materresbull.2015.11.001
- Mohajerani M.S., Lak A., Simchi A. // J. Alloys Compd. 2009. V. 485. № 1–2. P. 616. https://doi.org/10.1016/j.jallcom.2009.06.054
- Steparuk A.S., Irgashev R.A., Zhilina E.F. et al. // J. Mater. Sci. – Mater. Electron. 2022. V. 33. P. 6307. https://doi.org/10.1007/s10854-022-07805-w
- Iyengar P., Das C., Balasubramaniam K.R. // J. Phys. D: Appl. Phys. 2017. V. 50. № 10. P. 1. https://doi.org/10.1088/1361-6463/aa5875
- Chowdhury M.S., Rahman K.S., Selvanathan V. et al. // RSC Advances. 2021. V. 11. № 24. P. 14534. https://doi.org/10.1039/D1RA00338K
- Yang F., Ma S., Zhang X. et al. // Superlattices Microstruct. 2012. V. 52. № 2. P. 210. https://doi.org/10.1016/j.spmi.2012.05.004
- Jeon E.H., Yang S., Kim Y. et al. // Nanoscale Res. Lett. 2015. V. 10. № 1. P. 1. https://doi.org/10.1186/s11671-015-1063-4
- Khan A., Hussain M., Nur O. et al. // J. Phys. D: Appl. Phys. 2014. V. 47. № 34. P. 1. https://doi.org/10.1088/0022-3727/47/34/345102
- Maikap A., Mukherjee K., Mondal B., Mandal N. // RSC Advances. 2016. V. 6. P. 64611. https://doi.org/10.1039/C6RA09598D
- Laha P., Nazarkin M., Volkova A.V. et al. // Appl. Phys. Lett. 2015. V. 106. P. 101904. https://doi.org/10.1063/1.4913909
- Li J.Y., Chen X.L., Li H. et al. // J. Cryst. Growth. 2001 V. 233. P. 5. https://doi.org/10.1016/S0022-0248(01)01509-3
- Tauc J., Scott T.A. // Phys. Today. 1967. V. 20. № 10. P. 105. https://doi.org/10.1063/1.3033945
- Musa I., Qamhieh N., Mahmoud S.T. // Res. in Phys. 2017. V. 7. P. 3552. https://doi.org/10.1016/j.rinp.2017.09.035
- Idiawati R., Mufti N., Taufiq A. et al. // IOP Conf. Ser. Mater. Sci. Eng. 2017. V. 202. P. 012050. https://doi.org/10.1088/1757-899X/202/1/012050
- Zhang L., Cole J.M. // ACS Appl. Mater. and Interfaces. 2015. V. 7. P. 3427. https://doi.org/10.1021/am507334m
- Bojarski J.T., Mokrosz J.L., Barton H.J. et al. // Adv. Heterocycl. Chem. 1985. V. 38. P. 229. https://doi.org/10.1016/S0065-2725(08)60921-6
Arquivos suplementares
