Modeling of the Phase Equilibria in the La2O3–SrO–ZrO2 System Using the NUCLEA Database

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The goal of this study was to examine the phase equilibria in the La2O3–SrO–ZrO2 system, which is promising as a base for the development of high-temperature ceramics and materials with unique optical, electrochemical, and catalytic properties. Thermodynamic modeling of the phase equilibria in the system under consideration was carried out using the NUCLEA database and the GEMINI2 Gibbs energy minimizer. As a result, thirteen isothermal and one polythermal sections of the phase diagram of the La2O3–SrO–ZrO2 system were calculated in the temperature range 600-3023 K. The obtained data on the phase equilibria in the La2O3–SrO–ZrO2 system were discussed in comparison with the known information for the corresponding binary systems. The phase relations in the system under study were shown to correlate completely with the presence of the phases present in the corresponding binary systems. Temperature changes in the phase relations and boundaries of single-phase, two-phase, and three-phase regions in the system under study were considered. Four ternary eutectic points were identified at the temperatures equal to 2039 K, 2105 K, 2120 K, and 2351 K.

Sobre autores

V. Vorozhtsov

Institute of Silicate Chemistry of Russian Academy of Sciences

Autor responsável pela correspondência
Email: v.vorozhcov@rambler.ru
Rússia, Saint Petersburg

V. Almyashev

Institute of Silicate Chemistry of Russian Academy of Sciences; Alexandrov Research Institute of Technology

Email: v.vorozhcov@rambler.ru
Rússia, Saint Petersburg; Sosnovy Bor

V. Stolyarova

Institute of Silicate Chemistry of Russian Academy of Sciences; Saint Petersburg State University

Email: v.vorozhcov@rambler.ru
Rússia, Saint Petersburg; Saint Petersburg

Bibliografia

  1. Sarkar A., Djenadic R., Wang D. et al. // J. Eur. Ceram. Soc. 2018. V. 38. № 5. P. 2318. https://doi.org/10.1016/j.jeurceramsoc.2017.12.058
  2. Vinnik D.A., Trofimov E.A., Zhivulin V.E. et al. // Nanomaterials. 2020. V. 10. № 2. P. 268. https://doi.org/10.3390/NANO10020268
  3. Zaitseva O.V., Gudkova S.A., Trofimov E.A. et al. // IOP Conf. Ser. Mater. Sci. Eng. 2021. V. 1014. № 1. P. 012060. https://doi.org/10.1088/1757-899X/1014/1/012060
  4. Ma W., Jin X.-L., Ren Y. et al. // ITSC Proc. 2015. P. 867. https://doi.org/10.31399/asm.cp.itsc2015p0867
  5. Nalbandian L., Evdou A., Zaspalis V. // Int. J. Hydrogen Energy. 2011. V. 36. № 11. P. 6657. https://doi.org/10.1016/j.ijhydene.2011.02.146
  6. Keller M., Anderson D.P., Leion H. et al. // Appl. Catal., A: Gen. 2018. V. 550. P. 105. https://doi.org/10.1016/j.apcata.2017.10.020
  7. Klimkowicz A., Świerczek K., Takasaki A. et al. // Solid State Ionics. 2014. V. 257. P. 23. https://doi.org/10.1016/j.ssi.2014.01.018
  8. Speakman S.A., Carneim R.D., Payzant E.A. et al. // J. Mater. Eng. Perform. 2004. V. 13. № 3. P. 303. https://doi.org/10.1361/10599490419270
  9. Dąbrowa J., Olszewska A., Falkenstein A. et al. // J. Mater. Chem. A. 2020. V. 8. № 46. P. 24455. https://doi.org/10.1039/d0ta06356h
  10. Antonova E., Tropin E., Khodimchuk A. // Ionics. 2022. V. 28. № 11. P. 5181. https://doi.org/10.1007/s11581-022-04750-w
  11. Yan J., Wang D., Zhang X. et al. // J. Mater. Sci. 2020. V. 55. № 16. P. 6942. https://doi.org/10.1007/s10853-020-04482-0
  12. Shestakov V.A., Grachev E.V. // Russ. J. Inorg. Chem. 2022. V. 67. № 4. P. 488. https://doi.org/10.1134/S0036023622040179
  13. Vorozhtcov V.A., Stolyarova V.L. // Tech. Phys. 2021. V. 66. № 6. P. 872. https://doi.org/10.1134/S1063784221060219
  14. Lutsyk V.I., Zelenaya A.E. // Russ. J. Inorg. Chem. 2018. V. 63. № 7. P. 966. https://doi.org/10.1134/S0036023618070148
  15. Lutsyk V.I., Zelenaya A.E. // Russ. J. Inorg. Chem. 2018. V. 63. № 8. P. 1087. https://doi.org/10.1134/S0036023618080132
  16. Vorob’eva V.P., Zelenaya A.E., Lutsyk V.I. et al. // Glass Phys. Chem. 2021. V. 47. № 6. P. 616. https://doi.org/10.1134/S1087659621060328
  17. Vorob’eva V.P., Zelenaya A.E., Lutsyk V.I. // Russ. J. Inorg. Chem. 2021. V. 66. № 6. P. 894. https://doi.org/10.1134/S003602362106022X
  18. Hillert M. // Int. Met. Rev. 1985. V. 30. № 1. P. 45. https://doi.org/10.1179/imtr.1985.30.1.45
  19. Vorob’eva V., Zelenaya A., Lutsyk V. et al. // Mater. Sci. Eng., B. 2023. V. 297. P. 116790. https://doi.org/10.1016/J.MSEB.2023.116790
  20. Saunders N., Miodownik A.P. CALPHAD (Calculation of Phase Diagrams) : A Comprehensive Guide. Oxford: Pergamon Materials Series, 1998. 478 p. https://www.elsevier.com/books/calphad-calculation-of-phase-diagrams-a-comprehensive-guide/saunders/978-0-08-042129-2 (accessed May 14, 2020)
  21. Lukas H.L., Fries S.G., Sundman B. Computational thermodynamics: The Calphad method. N.Y.: Cambridge University Press, 2007. 324 p. https://doi.org/10.1017/CBO9780511804137
  22. Andersson J.O., Helander T., Höglund L. et al. // Calphad Comput. Coupling Phase Diagrams Thermochem. 2002. V. 26. № 2. P. 273. https://doi.org/10.1016/S0364-5916(02)00037-8
  23. Davies R.H., Dinsdale A.T., Gisby J.A. et al. // Calphad Comput. Coupling Phase Diagrams Thermochem. 2002. V. 26. № 2. P. 229. https://doi.org/10.1016/S0364-5916(02)00036-6
  24. Bale C.W., Chartrand P., Degterov S.A. et al. // Calphad Comput. Coupling Phase Diagrams Thermochem. 2002. V. 26. № 2. P. 189. https://doi.org/10.1016/S0364-5916(02)00035-4
  25. Bakardjieva S., Barrachin M., Bechta S. et al. // Prog. Nucl. Energy. 2010. V. 52. № 1. P. 84. https://doi.org/10.1016/j.pnucene.2009.09.014
  26. NUCLEA: Thermodynamic database for nuclear applications [Электронный ресурс]. URL: http://thermodata.online.fr/nuclea.html (дата обращения 30.03.2020).
  27. Guéneau C., Dupin N., Kjellqvist L. et al. // Calphad. 2021. V. 72. P. 102212. https://doi.org/10.1016/j.calphad.2020.102212
  28. Stolyarova V.L. // Russ. Chem. Rev. 2016. V. 85. № 1. P. 60. https://doi.org/10.1070/RCR4549
  29. Bechta S.V., Granovsky V.S., Khabensky V.B. et al. // Nucl. Eng. Des. 2008. V. 238. № 10. P. 2761. https://doi.org/10.1016/J.NUCENGDES.2008.04.018
  30. Vorozhtcov V.A., Yurchenko D.A., Almjashev V.I. et al. // Glass Phys. Chem. 2021. V. 47. № 5. P. 417. https://doi.org/10.1134/S1087659621050175
  31. Ворожцов В.А., Альмяшев В.И., Столярова В.Л. Расчет сечений фазовой диаграммы системы Zr-C-O с использованием базы данных NUCLEA / Под ред. Гельфонда Н.В. // Тез. докл. Симп. с международным участием «Термодинамика и материаловедение». Новосибирск: ИНХ СО РАН, 2023. С. 76. https://doi.org/10.26902/THERM_2023_056
  32. Sundman B., Ågren J. // J. Phys. Chem. Solids. 1981. V. 42. № 4. P. 297. https://doi.org/10.1016/0022-3697(81)90144-X
  33. Redlich O., Kister A.T. // Ind. Eng. Chem. 1948. V. 40. № 2. P. 345. https://doi.org/10.1021/ie50458a036
  34. Lopato L.M. // Ceramurg. Int. 1976. V. 2. № 1. P. 18. https://doi.org/10.1016/0390-5519(76)90004-1
  35. Grundy A.N., Hallstedt B., Gauckler L.J. // Acta Mater. 2002. V. 50. № 9. P. 2209. https://doi.org/10.1016/S1359-6454(01)00432-3
  36. Kitaguchi H., Ohno M., Kaichi M. et al. // J. Ceram. Soc. Jpn. 1988. V. 96. № 4. P. 397. https://doi.org/10.2109/jcersj.96.397
  37. Gavrilova L.Y., Aksenova T.V., Cherepanov V.A. // Russ. J. Inorg. Chem. 2008. V. 53. № 6. P. 953. https://doi.org/10.1134/S0036023608060235
  38. Zhang W.-W., Povoden-Karadeniz E., Shang Y. et al. // J. Eur. Ceram. Soc. 2023. V. 43. № 10. P. 4419. https://doi.org/10.1016/j.jeurceramsoc.2023.03.026
  39. Schulze A.-R., Müller-Buschbaum H. // Z. Anorg. Allg. Chem. 1980. V. 471. № 1. P. 59. https://doi.org/10.1002/zaac.19804710106
  40. Huang Z.K., Yan D.S., Tien T.Y. et al. // Mater. Lett. 1991. V. 11. № 8–9. P. 286. https://doi.org/10.1016/0167-577X(91)90204-J
  41. Andrievskaya E.R. // J. Eur. Ceram. Soc. 2008. V. 28. № 12. P. 2363. https://doi.org/10.1016/j.jeurceramsoc.2008.01.009
  42. Wang C., Fabrichnaya O., Zinkevich M. et al. // Calphad Comput. Coupling Phase Diagrams Thermochem. 2008. V. 32. № 1. P. 111. https://doi.org/10.1016/j.calphad.2007.07.005
  43. Zinkevich M. // Prog. Mater. Sci. 2007. V. 52. № 4. P. 597. https://doi.org/10.1016/J.PMATSCI.2006.09.002
  44. Fabrichnaya O., Lakiza S., Wang C. et al. // J. Alloys Compd. 2008. V. 453. № 1–2. P. 271. https://doi.org/10.1016/j.jallcom.2006.11.102
  45. Rouanet A. // Rev. Int. des Hautes Temp. des Refract. 1971. V. 8. № 2. P. 161.
  46. Traverse J.P., Foex M. // High Temp. - High Press. 1969. V. 1. P. 409.
  47. Noguchi T., Okubo T., Yonemochi O. // J. Am. Ceram. Soc. 1969. V. 52. № 4. P. 178. https://doi.org/10.1111/J.1151-2916.1969.TB13360.X
  48. Dash S., Sood D.D., Prasad R. // J. Nucl. Mater. 1996. V. 228. № 1. P. 83. https://doi.org/10.1016/0022-3115(95)00199-9
  49. Gong W., Xie Y., Zhao Z. et al. // J. Am. Ceram. Soc. 2020. V. 103. № 2. P. 1425. https://doi.org/10.1111/jace.16812

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies