Heat Capacity and Thermodynamic Functions of Ho2O3·2HfO2 Solid Solution

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Isobaric heat capacity measurements in the range 2.4–1807 K have been performed by relaxation calorimetry, adiabatic calorimetry, and differential scanning calorimetry on a Ho2O3‧2HfO2 solid solution sample prepared and characterized by X-ray powder diffraction, electron microscopy, and chemical analysis, and thermodynamic functions have been calculated. The Schottky anomaly contribution has been determined in the range 2.4–300 K.

Sobre autores

A. Guskov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: a.gus@igic.ras.ru
119991, Moscow, Russia

P. Gagarin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: a.gus@igic.ras.ru
119991, Moscow, Russia

V. Guskov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: a.gus@igic.ras.ru
119991, Moscow, Russia

A. Khoroshilov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: a.gus@igic.ras.ru
119991, Moscow, Russia

K. Gavrichev

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: a.gus@igic.ras.ru
119991, Moscow, Russia

Bibliografia

  1. Andrievskaya E.R. // J. Eur. Ceram. Soc. 2008. V. 28. P. 2363. https://doi.org/10.1016/jeurceramsoc.2008.01.009
  2. Арсеньев П.А., Глушкова В.Б., Евдокимов А.А. и др. Соединения редкоземельных элементов. Цирконаты, гафнаты, ниобаты, танталаты, антимонаты. М.: Наука, 1985. 261 с.
  3. Subramanian M.A., AravamudanG., SubbaRao G.V. //Prog. Solid State Chem. 1983. V. 15. P. 55. https://doi.org/10.1016/0079-6786(83)90001-8
  4. Trubelja M.F., Stubican V.S. // J. Am. Ceram. Soc. 1988. V. 71. P. 662. https://doi.org/10.1111/j.1151-2916.1988.tb06385.x
  5. Duran P., Pascual C. // J. Mater. Sci. 1984. V. 19. P. 1178. https://doi.org/10.1007/bf01120027
  6. Poerschke D.L., Barth T.L., Levi C.G. // Acta Mater. 2016. V. 120. P. 302. https://doi.org/10.1016/j.actamat.2016.08.077
  7. Poerschke D.L., Jackson R.W., Levi C.G. // Annu. Rev. Mater. Res. 2017. V. 47. P. 297. https://doi.org/10.1146/annurev-matsci-010917-105000
  8. Cao X.Q., Vassen R., Stoever D. // J. Eur. Ceram. Soc. 2004. V. 24. P. 1. https://doi.org/10.1016/s0955-2219(03)00129-8
  9. Mehboob G., Liu M.-J., Xu T., Hussain S. et al. // Ceram. Int. 2019. V. 46. P. 8497. https://doi.org/10.1016/j.ceramint.2019.12.20
  10. Padture N.P. // Science. 2002. V. 296. P. 280. https://doi.org/10.1126/science.1068609
  11. Wu Z., Hong D., Zhong X., Niu Y. et al. // Ceram. Int. 2023. V. 49. P. 21133. https://doi.org/10.1016/j.ceramint.2023.03.280
  12. Summers W.D., Poerschke D.L., Begley M.R. et al. // J. Am. Ceram. Soc. 2020. V. 103. P. 5196. https://doi.org/10.1111/jace.17187
  13. Fabrichnaya O., Seifert H.J. // J. Phase Equilib. Diffus. 2010. V. 32. P. 2. https://doi.org/10.1007/s11669-010-9815-4
  14. Guskov A.V., Gagarin P.G., Guskov V.N.et al. // Ceram. Int. 2021. V. 47. P. 28004. https://doi.org/10.1016/j.ceramint.2021.06.125
  15. Guskov V.N., Tyurin A.V., Guskov A.V. et al. // Ceram. Int. 2020. V. 46. P. 12822. https://doi.org/10.1016/j.ceramint.2020.02.052
  16. Тюрин А.В., Хорошилов А.В., Гуськов В.Н. и др. // Журн. неорган. химии. 2018. Т. 63. С. 1583. https://doi.org/10.1134/S0044457X18120218
  17. PPMS Physical Property Measurement System. Quantum Design. 2004.
  18. Lashley J.C., Hundley M.F., Migliori A. et al. // Cryogenics. 2003. V. 43. P. 369. https://doi.org/10.1016/s0011-2275(03)00092-4
  19. Малышев В.В., Мильнер Г.А., Соркин Е.Л., Шибакин В.Ф. // Приборы и техн. экспер. 1985. Т. 28. С. 195.
  20. https://analyzing-testing.netzsch.com/ru/pribory-resheniya/differenczialnaya-skaniruyushhaya-kalorimetriya-dsk-differenczialnyj-termicheskij-analiz-dta/dsc-404-f1-pegasus
  21. Voskov A.L., Kutsenok I.B., Voronin G.F. // Calphad. 2018. V. 61. P. 50. https://doi.org/10.1016/j.calphad.2018.02.001
  22. Voronin G.F., Kutsenok I.B. // J. Chem. Eng. Data. 2013. V. 58. P. 2083. https://doi.org/10.1021/je400316m
  23. Westrum E.F., Ir. // J. Therm. Anal. 1985. V 30. P. 1209.
  24. Catanese C.A., Meissner H.E. // Phys. Rev. B. 1973. V. 8. P. 2060. https://doi.org/10.1103/Phys.Rev.B.8.2060
  25. Гуськов А.В., Гагарин П.Г., Гуськов В.Н. и др. // Журн. физ. химии. 2022. Т. 96. С. 1230. https://doi.org/10.31857/S004445372209014X
  26. Chirico R.D., Boerio-Goates J., Westrum E.F., Jr. // J. Chem. Thermodyn. 1981. V. 13. P. 1087. https://doi.org/10.1016/0021-9614(81)90007-0
  27. Гуськов А.В., Гагарин П.Г., Гуськов В.Н. // Докл. РАН. Химия. Науки о материалах. 2021. Т. 498. С. 83. https://doi.org/31857.S2686953521050083
  28. Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932. V. 54. P. 3243. https://doi.org/10.1021/ja01347a029
  29. Konings R.J.M., Beneš O., Kovács A.et al. // J. Phys. Chem. Ref. Data. 2014. V. 43. P. 013101. https://doi.org/10.1063/1.4825256
  30. Pankratz L.B. // U.S. Bureau of Mines Bulletin. 1982. V. 672. 509 p.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (129KB)
3.

Baixar (140KB)
4.

Baixar (68KB)
5.

Baixar (97KB)

Declaração de direitos autorais © А.В. Гуськов, П.Г. Гагарин, В.Н. Гуськов, А.В. Хорошилов, К.С. Гавричев, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies