New Method for Synthesis of Substituted 1-Amidine-closo-decaborates [1-B10H9NH=C(R1)NHR2] (R1 = Me, iPr, Ph; R2 = nBu, Bn)
- Autores: Bil’bulyan A.A.1, Nelyubin A.V.2, Selivanov N.A.2, Bykov A.Y.2, Klyukin I.N.2, Zhdanov A.P.2, Zhizhin K.Y.2, Kuznetsov N.T.2
-
Afiliações:
- Mendeleev University of Chemical Technology of Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Edição: Volume 68, Nº 11 (2023)
- Páginas: 1523-1527
- Seção: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://journals.rcsi.science/0044-457X/article/view/231651
- DOI: https://doi.org/10.31857/S0044457X23600913
- EDN: https://elibrary.ru/DKBXTQ
- ID: 231651
Citar
Resumo
The process of nucleophilic substitution of the phenyliodonium substituent in the [1-B10H9IPh]– anion with primary amines in organic nitriles has been studied. It has been shown that the reaction proceeds with the formation of a mixture of products, namely, 1-monoalkylammonio-closo-decaborate and the corresponding amidine, which is formed when an amine molecule is added to the nitrile. The resulting products have been characterized by 1H, 11B, 13C NMR spectroscopies, IR absorption spectroscopy, and high-resolution ESI mass spectroscopy.
Palavras-chave
Sobre autores
A. Bil’bulyan
Mendeleev University of Chemical Technology of Russia
Email: zhdanov@igic.ras.ru
125047, Moscow, Russia
A. Nelyubin
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: zhdanov@igic.ras.ru
119991, Moscow, Russia
N. Selivanov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: zhdanov@igic.ras.ru
119991, Moscow, Russia
A. Bykov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: zhdanov@igic.ras.ru
119991, Moscow, Russia
I. Klyukin
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: zhdanov@igic.ras.ru
119991, Moscow, Russia
A. Zhdanov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: zhdanov@igic.ras.ru
119991, Moscow, Russia
K. Zhizhin
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Email: zhdanov@igic.ras.ru
119991, Moscow, Russia
N. Kuznetsov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Autor responsável pela correspondência
Email: zhdanov@igic.ras.ru
119991, Moscow, Russia
Bibliografia
- Spokoyny A.M. // Pure Appl. Chem. 2013. V. 85. № 5. P. 903. https://doi.org/10.1351/PAC-CON-13-01-13
- Barth R.F., Coderre J.A., Vicente M.G.H. et al. // Clinical Cancer Research. 2005. V. 11. № 11. P. 3987. https://doi.org/10.1158/1078-0432.CCR-05-0035
- Olid D., Núñez R., Viñas C. et al. // Chem. Soc. Rev. 2013. V. 42. № 8. P. 3318. https://doi.org/10.1039/C2CS35441A
- Stogniy M.Y., Erokhina S.A., Sivaev I.B. et al. // Phosphorus Sulfur Silicon Relat Elem. 2019. P. 1. https://doi.org/10.1080/10426507.2019.1631312
- Evamarie Hey-Hawkins C.V.T. // Boron-Based Compounds: Potential and Emerging Applications in Medicine, John Wiley & Sons Ltd, 2018.
- Geis V., Guttsche K., Knapp C. et al. // Dalton Trans. 2009. № 15. P. 2687. https://doi.org/10.1039/b821030f
- Matveev E.Yu., Avdeeva V.V., Zhizhin K.Yu. et al. // Inorganics (Basel). 2022. V. 10. № 12. P. 238. https://doi.org/10.3390/inorganics10120238
- Avdeeva V.V., Malinina E.A., Kuznetsov N.T. // Coord. Chem. Rev. 2022. V. 469. P. 214636. https://doi.org/10.1016/j.ccr.2022.214636
- Rao M.H., Muralidharan K. // Polyhedron. 2016. V. 115. P. 105. https://doi.org/10.1016/j.poly.2016.03.062
- Derdziuk J., Malinowski P.J., Jaroń T. // Int. J. Hydrogen. Energy. 2019. V. 44. № 49. P. 27030. https://doi.org/10.1016/j.ijhydene.2019.08.158
- Novopashina D.S., Vorobyeva M.A., Venyaminova A. // Front. Chem. 2021. V. 9. № March. P. 1. https://doi.org/10.3389/fchem.2021.619052
- Varkhedkar R., Yang F., Dontha R. et al. // ACS Cent. Sci. 2022. V. 8. № 3. P. 322. https://doi.org/10.1021/acscentsci.1c01132
- Michiue H., Sakurai Y., Kondo N. et al. // Biomaterials. 2014. V. 35. № 10. P. 3396. https://doi.org/10.1016/j.biomaterials.2013.12.055
- Nelyubin A.V., Selivanov N.A., Klyukin I.N. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 9. P. 1390. https://doi.org/10.1134/S0036023621090096
- Koganei H., Tachikawa S., El-Zaria M.E. et al. // New J. Chem. 2015. V. 39. № 8. P. 6388. https://doi.org/10.1039/C5NJ00856E
- Zhang Y., Sun Y., Wang T. et al. // Molecules. 2018. V. 23. № 12. P. 3137. https://doi.org/10.3390/molecules23123137
- Sivaev I.B., Prikaznov A.V., Naoufal D. // Collect. Czech. Chem. Commun. 2010. V. 75. № 11. P. 1149. https://doi.org/10.1135/cccc2010054
- Sivaev I.B., Votinova N.A., Bragin V.I. et al. // J. Organomet. Chem. 2002. V. 657. № 1–2. P. 163. https://doi.org/10.1016/S0022-328X(02)01419-5
- Zhdanov A.P., Voinova V.V., Klyukin I.N. et al. // Russ. J. Coord. Chem. 2019. V. 45. № 8. P. 563. https://doi.org/10.1134/S1070328419080098
- Holub J., El Anwar S., Jelínek T. et al. // Eur. J. Inorg. Chem. 2017. V. 2017. № 38. P. 4499. https://doi.org/10.1002/ejic.201700651
- Kaszyński P., Ringstrand B. // Angew. Chem. Int. Ed. 2015. V. 54. № 22. P. 6576. https://doi.org/10.1002/anie.201411858
- Rzeszotarska E., Novozhilova I., Kaszyński P. // Inorg. Chem. 2017. V. 56. № 22. P. 14351. https://doi.org/10.1021/acs.inorgchem.7b02477
- Kaszynski P., Huang J., Jenkins G.S. et al. // Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A: Mol. Cryst. Liq. Cryst. 1995. V. 260. № 1. P. 315. https://doi.org/10.1080/10587259508038705
- Kapuściński S., Hietsoi O., Pietrzak A. et al. // Chem. Commun. 2022. V. 58. № 6. P. 851. https://doi.org/10.1039/D1CC06485A
- Jacob L., Rzeszotarska E., Koyioni M. et al. // Chem. Mater. 2022. V. 34. № 14. P. 6476. https://doi.org/10.1021/acs.chemmater.2c01165
- Kapuscinski S., Abdulmojeed M.B., Schafer T.E. et al. // Inorg. Chem. Front. 2021. V. 8. № 4. P. 1066. https://doi.org/10.1039/d0qi01353f
- Jankowiak A., Baliński A., Harvey J.E. et al. // J. Mater. Chem. C.: Mater. 2013. V. 1. № 6. P. 1144. https://doi.org/10.1039/c2tc00547f
- Zurawiński R., Jakubowski R., Domagała S. et al. // Inorg. Chem. 2018. V. 57. № 16. P. 10442. https://doi.org/10.1021/acs.inorgchem.8b01701
- Hietsoi O., Kapuściński S.P., Friedli A.C. et al. // J. Mol. Struct. 2023. V. 1284. P. 135324. https://doi.org/10.1016/j.molstruc.2023.135324
- Burdenkova A.V., Zhdanov A.P., Klyukin I.N. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 11. P. 1616. https://doi.org/10.1134/S0036023621110036
- Zhdanov A.P., Polyakova I.N., Razgonyaeva G.A. et al. // Russ. J. Inorg. Chem. 2011. V. 56. № 6. P. 1. https://doi.org/10.1134/S003602361106026X
- Nelyubin A.V., Klyukin I.N., Novikov A.S. et al. // Mendeleev Commun. 2021. V. 31. № 2. P. 201. https://doi.org/10.1016/j.mencom.2021.03.018
