Synthesis and Physicochemical Properties of Yttrium Subgroup REE Lactates Ln(C3H5O3)3·2H2O (Ln = Y, Tb–Lu)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A series of yttrium subgroup rare earth elements (REE) lactates of [Ln(C3H5O3)3(H2O)2] (Ln = Tb–Lu) composition isostructural to yttrium lactate has been prepared for the first time. Synthesis of crystalline REE lactates has been performed from solutions of REE nitrates in the presence of L-lactic acid and hexamethylenetetramine. The composition and structure of the obtained compounds have been confirmed by X-ray powder diffraction, thermal, and chemical (CHN) analysis. The coordination type of lactate anions to REE cations has been determined by IR spectroscopy. Thermal decomposition of REE lactates at 800°C leads to formation of nanocrystalline (20–40 nm) REE (Y, Tb–Lu) oxides.

Sobre autores

M. Golikova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: yapryntsev@igic.ras.ru
Leninskii pr. 31, 119991, Moscow, Russia

A. Yapryntsev

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: yapryntsev@igic.ras.ru
Leninskii pr. 31, 119991, Moscow, Russia

Ch. Jia

Moscow State University

Email: yapryntsev@igic.ras.ru
119991, Moscow, Russia

E. Fatyushina

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: yapryntsev@igic.ras.ru
Leninskii pr. 31, 119991, Moscow, Russia

A. Baranchikov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: yapryntsev@igic.ras.ru
Leninskii pr. 31, 119991, Moscow, Russia

V. Ivanov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; Moscow State University

Autor responsável pela correspondência
Email: yapryntsev@igic.ras.ru
Leninskii pr. 31, 119991, Moscow, Russia; 119991, Moscow, Russia

Bibliografia

  1. Janicki R., Mondry A., Starynowicz P. // Coord. Chem. Rev. 2017. V. 340. P. 98. https://doi.org/10.1016/j.ccr.2016.12.001
  2. Shmelev M.A., Gogoleva N.V., Ivanov V.K. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 9. P. 539. https://doi.org/10.1134/S1070328422090056
  3. Shmelev M.A., Voronina Y.K., Gogoleva N.V. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 4. P. 224. https://doi.org/10.1134/S1070328422040042
  4. Boskovic C. // Acc. Chem. Res. 2017. V. 50. № 9. P. 2205. https://doi.org/10.1021/acs.accounts.7b00197
  5. Stock N., Biswas S. // Chem. Rev. 2012. V. 112. № 2. P. 933. https://doi.org/10.1021/cr200304e
  6. Lu J., Wang R. // Encycl. Inorg. Bioinorg. Chem. John Wiley & Sons, Ltd, Chichester, UK, 2012. https://doi.org/10.1002/9781119951438.eibc2024
  7. Sun X., Yuan K., Zhang Y. // J. Rare Earths. 2020. V. 38. № 8. P. 801. https://doi.org/10.1016/j.jre.2020.01.012
  8. Zhang H., Ye K., Huang X. et al. // Inorg. Chem. Front. 2021. V. 8. № 14. P. 3433. https://doi.org/10.1039/D1QI00442E
  9. Shmychkov N.V., Orlova A.V., Vlasova K.Y. et al. // SSRN Electron. J. 2022. https://doi.org/10.2139/ssrn.4303491
  10. Rezende Souza E., Silva I.G.N., Teotonio E.E.S. et al. // J. Lumin. 2010. V. 130. № 2. P. 283. https://doi.org/10.1016/j.jlumin.2009.09.004
  11. Li L., Fang Y., Liu S. et al. // J. Rare Earths. 2023. V. 41. № 1. P. 100. https://doi.org/10.1016/j.jre.2022.02.019
  12. Yuan S., Feng L., Wang K. et al. // Adv. Mater. 2018. V. 30. № 37. P. 1. https://doi.org/10.1002/adma.201704303
  13. Zhao S.-N., Wang G., Poelman D. et al. // Materials (Basel). 2018. V. 11. № 4. P. 572. https://doi.org/10.3390/ma11040572
  14. Wahsner J., Gale E.M., Rodríguez-Rodríguez A. et al. // Chem. Rev. 2019. V. 119. № 2. P. 957. https://doi.org/10.1021/acs.chemrev.8b00363
  15. Chen W.-J., Gu Y.-H., Zhao G.-W. et al. // Plant Sci. 2000. V. 152. № 2. P. 145. https://doi.org/10.1016/S0168-9452(99)00235-6
  16. Nalbandian M., Takeda M. // Biology (Basel). 2016. V. 5. № 4. P. 38. https://doi.org/10.3390/biology5040038
  17. Adeva-Andany M., López-Ojén M., Funcasta-Calderón R. et al. // Mitochondrion. 2014. V. 17. P. 76. https://doi.org/10.1016/j.mito.2014.05.007
  18. Nash K.L., Johnson G., Brigham D. et al. // Procedia Chem. 2012. V. 7. P. 45. https://doi.org/10.1016/j.proche.2012.10.009
  19. Nash K.L. // Solvent Extr. Ion Exch. 2015. V. 33. № 1. P. 1. https://doi.org/10.1080/07366299.2014.985912
  20. Braley J.C., McAlister D.R., Philip Horwitz E. et al. // Solvent Extr. Ion Exch. 2013. V. 31. № 2. P. 107. https://doi.org/10.1080/07366299.2012.735503
  21. Tian G., Martin L.R., Rao L. // Inorg. Chem. 2010. V. 49. № 22. P. 10598. https://doi.org/10.1021/ic101592h
  22. Barkleit A., Kretzschmar J., Tsushima S. et al. // Dalton Trans. 2014. V. 43. № 29. P. 11221. https://doi.org/10.1039/C4DT00440J
  23. Li Y., Yan P., Hou G. et al. // J. Organomet. Chem. 2013. V. 723. P. 176. https://doi.org/10.1016/j.jorganchem.2012.09.015
  24. Qu Z.-R., Ye Q., Zhao H. et al. // Chem. – A Eur. J. 2008. V. 14. № 11. P. 3452. https://doi.org/10.1002/chem.200701449
  25. Ye Q., Fu D.-W., Tian H. et al. // Inorg. Chem. 2008. V. 47. № 3. P. 772. https://doi.org/10.1021/ic701828w
  26. Yapryntsev A.D., Baranchikov A.E., Churakov A.V. et al. // RSC Adv. 2021. V. 11. № 48. P. 30195. https://doi.org/10.1039/D1RA05923H
  27. Zhang Y., Karatchevtseva I., Kadi F. et al. // Polyhedron. 2015. V. 87. P. 377. https://doi.org/10.1016/j.poly.2014.12.006
  28. Alsowayigh M.M., Timco G.A., Borilovic I. et al. // Inorg. Chem. 2020. V. 59. № 21. P. 15796. https://doi.org/10.1021/acs.inorgchem.0c02249
  29. Powell J.E., Farrell J.L. // Some Observations Regarding Rare-Earth Lactates, Ames, IA (United States), 1962. https://doi.org/10.2172/4749791
  30. Gouveia M.A., de Carvalho R.G. // J. Inorg. Nucl. Chem. 1966. V. 28. № 3. P. 913. https://doi.org/10.1016/0022-1902(66)80432-3
  31. Choppin G.R., Chopoorian J.A. // J. Inorg. Nucl. Chem. 1961. V. 22. № 1–2. P. 97. https://doi.org/10.1016/0022-1902(61)80234-0
  32. Shannon R.D. // Acta Crystallogr., Sect. A. 1976. V. 32. № 5. P. 751. https://doi.org/10.1107/S0567739476001551
  33. Wenk H.-R. // Z. Krist.: Cryst. Mater. 1981. V. 154. № 1–2. P. 137. https://doi.org/10.1524/zkri.1981.154.1-2.137
  34. Grenthe I., Fermor J.H., Kjekshus A. et al. // Acta Chem. Scand. 1971. V. 25. P. 3721. https://doi.org/10.3891/acta.chem.scand.25-3721
  35. Kendin M., Tsymbarenko D. // Cryst. Growth Des. 2020. V. 20. № 5. P. 3316. https://doi.org/10.1021/acs.cgd.0c00110
  36. Nabar M.A., Barve S.D. // J. Appl. Crystallogr. 1984. V. 17. № 1. P. 39. https://doi.org/10.1107/S0021889884010979
  37. Jiang Z.-G., Lv Y.-K., Cheng J.-W. et al. // J. Solid State Chem. 2012. V. 185. P. 253. https://doi.org/10.1016/j.jssc.2011.11.012
  38. Socrates G. // Infrared and Raman characteristic group frequencies. Tables and charts, 2001.
  39. Maiwald M.M., Müller K., Heim K. et al. // New J. Chem. 2020. V. 44. № 39. P. 17033. https://doi.org/10.1039/D0NJ04291A
  40. Cassanas G., Morssli M., Fabrègue E. et al. // J. Raman Spectrosc. 1991. V. 22. № 7. P. 409. https://doi.org/10.1002/jrs.1250220709
  41. Ozga W., Brzyska W. // J. Therm. Anal. 1989. V. 35. P. 5. https://doi.org/10.1007/BF01914259
  42. Sugita Y., Ouchi A. // Bull. Chem. Soc. Jpn. 1987. V. 60. № 1. P. 171. https://doi.org/10.1246/bcsj.60.171
  43. Kraka E., Larsson J.A., Cremer D. // Comput. Spectrosc. Wiley. 2010. P. 105. https://doi.org/10.1002/9783527633272.ch4
  44. Комиссарова Л.Н., Пушкина Г.Я., Щербакова Л.Г. и др. Соединения редкоземельных элементов. Карбонаты, оксалаты, нитраты, титанаты. М.: Наука, 1984.
  45. Wang X., Molokeev M.S., Zhu Q. et al. // Chem. - A Eur. J. 2017. V. 23. № 63. P. 16034. https://doi.org/10.1002/chem.201703282
  46. Langford J.I., Wilson A.J.C. // J. Appl. Crystallogr. 1978. V. 11. № 2. P. 102. https://doi.org/10.1107/S0021889878012844

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (2MB)
3.

Baixar (109KB)
4.

Baixar (121KB)
5.

Baixar (366KB)
6.

Baixar (136KB)
7.

Baixar (134KB)
8.

Baixar (1MB)

Declaração de direitos autorais © М.В. Голикова, А.Д. Япрынцев, Ч. Цзя, Е.В. Фатюшина, А.Е. Баранчиков, В.К. Иванов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies