Transformations of Cerium Tetrafluoride Hydrate under Hydrothermal Conditions: A New Cerium Fluoride Hydrate Се3F10 ⋅ 3Н2О

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The behavior of cerium tetrafluoride hydrate was studied in water at a temperature of 80°C and under hydrothermal treatment at 100, 130, and 220°C for a day. The product of the hydrothermal treatment of CeF4·H2O at 100°C was investigated by chemical, thermogravimetric, IR spectroscopic, and X-ray powder diffraction analyses, which identified a new cerium fluoride with the composition, presumably, Ce3F10⋅3H2O or, most likely, (H3O)Ce3F10⋅2H2O. New compound crystallizes in the space group 
 with a unit cell parameter of 11.66 Å. Hydrothermal treatment of cerium tetrafluoride hydrate at temperatures above 130°C leads to hydrolysis and reduction of cerium(IV) fluoride compounds to form CeO2 and CeF3.

Sobre autores

E. Il’in

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: eg_ilin@mail.ru
119991, Moscow, Russia

A. Parshakov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: eg_ilin@mail.ru
119333, Moscow, Russia

L. Iskhakova

Dianov Fiber Optics Research Center, Prokhorov Institute of General Physics, Russian Academy of Sciences

Email: eg_ilin@mail.ru
119333, Moscow, Russia

S. Kottsov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: eg_ilin@mail.ru
119991, Moscow, Russia

A. Filippova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: eg_ilin@mail.ru
119991, Moscow, Russia

L. Goeva

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: eg_ilin@mail.ru
119991, Moscow, Russia

N. Simonenko

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: eg_ilin@mail.ru
119991, Moscow, Russia

A. Baranchikov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: eg_ilin@mail.ru
119991, Moscow, Russia

V. Ivanov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: eg_ilin@mail.ru
119991, Moscow, Russia

Bibliografia

  1. Lin H.-J., Li H.-W., Murakami H. et al. // J. Alloys Compd. 2018. V. 735. P. 1017. https://doi.org/10.1016/j.jallcom.2017.10.239
  2. Liu G.K., Jursich G., Huang J. et al. // J. Alloys Compd. 1994. V. 213–214. P. 207. https://doi.org/10.1016/0925-8388(94)90905-9
  3. Sun Y., Yang X., Mei H. et al. // ACS Omega. 2021. V. 6. № 17. P. 11348. https://doi.org/10.1021/acsomega.1c00332
  4. Haase M., Schäfer H. // Angew. Chem. Int. Ed. 2011. V. 50. P. 5808. https://doi.org/10.1002/anie.201005159
  5. Shan G.-B., Demopoulos G.P. // Adv. Mater. 2010. V. 22. P. 4373. https://doi.org/10.1002/adma.201001816
  6. van der Ende B.M., Aarts L., Meijerink A. // Phys. Chem. Chem. Phys. 2009. V. 11(47). P. 11081. https://doi.org/10.1039/b913877c
  7. Wang F., Liu X. // Chem. Soc. Rev. 2009. V. 38(4). P. 976. https://doi.org/10.1039/b809132n
  8. Wang F., Banerjee D., Liu Y. et al. // Analyst. 2010. V. 135. P. 1839. https://doi.org/10.1039/c0an00144a
  9. Chilingarov N.S., Knot’ko A.V., Shlyapnikov I.M. et al. // J. Phys. Chem. A. 2015. V. 119(31). P. 8452. https://doi.org/10.1021/acs.jpca.5b04105
  10. Binnemans K. // Handbook on the Physics and Chemistry of Rare Earths. 2006. V. 36. P. 281. https://doi.org/10.1016/S0168-1273(06)36003-5
  11. Furuya T., Kamlet A.S., Ritter T. // Nature. 2011. V. 473. P. 470. https://doi.org/10.1038/nature10108
  12. Grzechnik A., Underwood C.C., Kolis J.W. et al. // J. Fluor. Chem. 2013. V. 156. P. 124. https://doi.org/10.1016/j.jfluchem.2013.09.002
  13. Lopez C., Deschanels X., Bart J.M. et al. // J. Nucl. Mater. 2003. V. 312. P. 76. https://doi.org/10.1016/S0022-3115(02)01549-0
  14. Marsac R., Réal F., Banik N.L. et al. // Dalton. Trans. 2017. V. 46. P. 13553. https://doi.org/10.1039/C7DT02251D
  15. Schmidt R., Müller B.G. // Z. Anorg. Allg. Chem. 1999. V. 625. P. 605. https://doi.org/10.1002/(SICI)1521-3749(199904)62-5:4<605::AID-ZAAC605>3.0.CO;2-6
  16. Zachariasen W.H. // Acta Crystallogr. 1949. V. 2. P. 388. https://doi.org/10.1107/S0365110X49001016
  17. Brown D. // Halides of the Lanthanides and Actinides. New York: Wiley, 1968. 288 p.
  18. Gabela F., Kojić-Prodić B., Šljukić M. et al. // Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1977. V. 33(12). P. 3733. https://doi.org/10.1107/S0567740877011960
  19. Waters T.N. // J. Inorg. Nucl. Chem. 1960. V. 15. P. 320. https://doi.org/10.1016/0022-1902(60)80061-9
  20. Hall D., Rickard C.E.F., Waters T.N. // Nature. 1965. V. 207. P. 405. https://doi.org/10.1038/207405b0
  21. Gerasimenko A.V., Davidovich R.L., Tkachev V.V. et al. // Acta Crystallogr., Sect. E: Struct. Reports Online. 2006. V. 62(2). P. M196. https://doi.org/10.1107/S1600536805042479
  22. Du Y., Yu J., Chen Y. et al. // Dalton. Trans. 2009. V. 2009. P. 6736. https://doi.org/10.1039/b902998b
  23. Гельмбольдт В.О., Ганин Э.В., Короева Л.В. и др. // Журн. неорган. химии. 2001. Т. 46. № 11. С. 1833.
  24. Рахматуллаев К., Талипов Ш.Т., Юсупова Р. // Докл. АН УзССР. 1962. № 4. P. 46.
  25. Опаловский А.А. // Изв. СО АН СССР. 1964. Т. 67. С. 46.
  26. Киселев Ю.М., Мартыненко Л.И., Спицын В.И. // Журн. неорган. химии. 1975. Т. 20. С. 576.
  27. Asker W., Wylie A. // Aust. J. Chem. 1965. V. 18. № 7. P. 959. https://doi.org/10.1071/CH9650959
  28. Il’in E.G., Parshakov A.S., Iskhakova L.D. et al. // J. Fluor. Chem. 2020. V. 236. P. 109576. https://doi.org/10.1016/j.jfluchem.2020.109576
  29. Dawson J.K., D’Eye R.W.M., Truswell A.E. // J. Chem. Soc. 1954. P. 3922. https://doi.org/10.1039/jr9540003922
  30. Champion M.J.D., Levason W., Reid G. // J. Fluor. Chem. 2014. V. 157. P. 19. https://doi.org/10.1016/j.jfluchem.2013.10.014
  31. Il’in E.G., Parshakov A.S., Yarzhemsky V.G. et al. // J. Fluor. Chem. 2021. V. 251. P. 109897. https://doi.org/10.1016/j.jfluchem.2021.109897
  32. Le Berre F., Boucher E., Allain M. et al. // J. Mater. Chem. 2000. V. 10. P. 2578. https://doi.org/10.1039/b002520h
  33. Cheetham A.K., Fender B.E.F., Fuess H. et al. // Acta Crystallogr., Sect. B. 1976. V. 32. P. 94. https://doi.org/10.1107/S0567740876002380
  34. Kuznetsov S.V., Osiko V.V., Tkatchenko E.A. et al. // Russ. Chem. Rev. 2006. V. 75. P. 1065. https://doi.org/10.1070/RC2006v075n12ABEH003637
  35. Caron C., Boudreau D., Ritcey A.M. // J. Mater. Chem. C. 2015. V. 3. P. 9955. https://doi.org/10.1039/C5TC02527C
  36. Andrrev O.V., Razumkova I.A., Boiko A.N. // J. Fluor. Chem. 2018. V. 207. P. 77. https://doi.org/10.1016/j.jfluchem.2017.12.001
  37. Stephens N.F., Lightfoot P. // J. Solid State Chem. 2007. V. 180. P. 260. https://doi.org/10.1016/j.jssc.2006.09.032
  38. Podberezskaya N.V., Potapova O.G., Borisov S.V. et al. // J. Struct. Chem. 1977. V. 17. P. 815. https://doi.org/10.1007/BF00746034
  39. Fedorov P.P., Kuznetsov S.V., Osiko V.V. // Progress in Fluorine Science Series. Elsevier, 2016. P. 7. https://doi.org/10.1016/B978-0-12-801639-8.00002-7
  40. Fedorov P.P., Mayakova M.N., Kuznetsov S.V. et al. // Nanosyst. Physics, Chem. Math. 2017. V. 8(4). P. 462. https://doi.org/10.17586/2220-8054-2017-8-4-462-470
  41. Dzhabiev T.S., Tkachenko V.Y., Dzhabieva Z.M. et al. // Russ. J. Phys. Chem. A. 2020. V. 94(7). P. 1330. https://doi.org/10.1134/S0036024420060096
  42. Kärkäs M.D., Verho O., Johnston E.V. et al. // Chem. Rev. 2014. V. 114. P. 11863. https://doi.org/10.1021/cr400572f
  43. Prieur D., Bonani W., Popa K. et al. // Inorg. Chem. 2020. V. 59. P. 5760. https://doi.org/10.1021/acs.inorgchem.0c00506
  44. Plakhova T.V., Romanchuk A.Y., Butorin S.M. et al. // Nanoscale. 2019. V. 11. P. 18142. https://doi.org/10.1039/c9nr06032d
  45. Finkelnburg W., Stein A. // J. Chem. Phys. 1950. V. 18. P. 1296. https://doi.org/10.1063/1.1747929
  46. Udayakantha M., Schofield P., Waetzig G.R. et al. // J. Solid State Chem. 2019. V. 270. P. 569. https://doi.org/10.1016/j.jssc.2018.12.017
  47. Baenziger N.C., Holden J.R., Knudson G.E. et al. // J. Am. Chem. Soc. 1954. V. 76. P. 4734. https://doi.org/10.1021/ja01647a073
  48. Zakiryanova I.D., Mushnikov P.N., Nikolaeva E.V. et al. // Processes. 2023. V. 11. P. 988. https://doi.org/10.3390/pr11040988

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (196KB)
3.

Baixar (163KB)
4.

Baixar (134KB)
5.

Baixar (122KB)
6.

Baixar (171KB)
7.

Baixar (184KB)
8.

Baixar (125KB)

Declaração de direitos autorais © Е.Г. Ильин, А.С. Паршаков, Л.Д. Исхакова, С.Ю. Котцов, А.Д. Филиппова, Л.В. Гоева, Н.П. Симоненко, А.Е. Баранчиков, В.К. Иванов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies