Ceramics of the Cs2O–Al2O3 System Prepared by Solid-Phase Technology and the Glycine–Nitrate Combustion Process

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Cs2O–Al2O3 ceramic samples containing 20 and 33 mol % cesium oxide were prepared by сeramic technique and by the glycine–nitrate combustion process. The prepared samples were identified and characterized by X-ray powder diffraction and X-ray fluorescence analyses, scanning electron microscopy, and differential thermal analysis. X-ray powder diffraction and scanning electron microscopy showed that the phase composition and surface of the samples change significantly and nonmonotonically depending on the synthetic method used and the heat treatment parameters of the batch. Optimal synthetic conditions and heat treatment parameters for preparing Cs2O–Al2O3 samples were elucidated.

Sobre autores

A. Fedorova

St. Petersburg State University

Email: avfiodorova@gmail.com
199034, St. Petersburg, Russia

V. Stolyarov

St. Petersburg State University

Email: avfiodorova@gmail.com
199034, St. Petersburg, Russia

M. Pavelina

St. Petersburg State University

Email: avfiodorova@gmail.com
199034, St. Petersburg, Russia

P. Kolonitskii

St. Petersburg State University

Email: avfiodorova@gmail.com
199034, St. Petersburg, Russia

S. Kirichenko

St. Petersburg State University

Email: avfiodorova@gmail.com
199034, St. Petersburg, Russia

A. Timchuk

St. Petersburg State Electrotechnical University “LETI” named after V.I. Ul’yanov (Lenin)

Email: avfiodorova@gmail.com
197022, St. Petersburg, Russia

V. Stolyarova

St. Petersburg State University

Autor responsável pela correspondência
Email: avfiodorova@gmail.com
199034, St. Petersburg, Russia

Bibliografia

  1. Prins R. // J. Catal. 2020. V. 392. P. 336. https://doi.org/10.1016/j.jcat.2020.10.010
  2. Busca G. // Prog. Mater. Sci. 2019. V. 104. P. 215. https://doi.org/10.1016/j.pmatsci.2019.04.003
  3. Meephoka C., Chaisuk C., Samparnpiboon P., Praserthdam P. // Catal. Commun. 2008. V. 9. P. 546. https://doi.org/10.3390/cryst11060690
  4. Shreyas P.S., Mahesh B.P., Rajanna S., Rajesh N. // Mat. Tood. Proc. 2021. V. 45. P. 429. https://doi.org/10.1016/j.matpr.2020.12.1012
  5. Подзорова Л.И., Ильичёва А.А., Пенькова О.И. и др. // Неорган. материалы. 2019. Т. 55. С. 671. https://doi.org/0.1134/S0002337X19060125
  6. Chaitree W., Jiemsirilers S., Mekasuwandumrong O. et al. // Catal. Today. 2011. V. 164. P. 302. https://doi.org/10.1016/j.cattod.2010.11.004
  7. Tsybulya S.V., Kryukova G.N. // Phys. Rev. B. 2008. V. 77. P. 024112. https://doi.org/10.1103/PhysRevB.77.024112
  8. Paglia G., Buckley C.E., Rohl A.L. et al. // Phys. Rev. B. 2003. V. 68. P. 144110. https://doi.org/10.1103/PhysRevB.68.144110
  9. Rudolph M., Motylenko M., Rafaja D. // IUCrJ. 2019. V. 6. P. 116. https://doi.org/10.1107/S2052252518015786
  10. Marí B., Singh K.C., Moya M. et al. // Opt. Quant. Electr. 2015. V. 47. P. 1569. https://doi.org/10.1007/s11082-014-9997-9
  11. Saeed Adel M.N., Al-Gunaid Murad Q.A., Subramani N.K. et al. // Pol.-Plast. Tech. Eng. 2018. V. 57. P. 1188. https://doi.org/10.1080/03602559.2017.1373402
  12. McMillan P.F., Grzechnik A., Chotalla H. // J. Non-Cryst. Solids. 1998. V. 226. № 3. P. 239. https://doi.org/10.1016/S0022-3093(98)00416-5
  13. Fukumi K., Sakka S., Kokubo T. // J. Non-Cryst. Solids. 1987. V. 93. P. 190. https://doi.org/10.1016/S0022-3093(87)80038-8
  14. Macleod N., Keel J.M., Lambert R.M. // Catal. Lett. 2003. V. 86. P. 51. https://doi.org/10.1023/A:1022602807322
  15. Ansari A.A., Khan M.A.M., Khan M.N., Alrokayan S.A. // J. Semicond. 2011. V. 32. P. 1. https://doi.org/10.1088/1674-4926/32/4/043001
  16. Guéneau C., Flèche J.L. // Calphad. 2015. V. 49. P. 67. https://doi.org/10.1016/j.calphad.2015.02.002
  17. Stolyarova V.L., Vorozhtcov V.A., Lopatin S.I. et al. // Rapid Commun. Mass Spectrom. 2021. V. 35. P. e9079. https://doi.org/10.1002/rcm.9079
  18. Stolyarova V.L., Vorozhtcov V.A., Lopatin S.I. et al. // Rapid Commun. Mass Spectrom. 2021. V. 35. P. e9097. https://doi.org/10.1002/rcm.9097
  19. Каймиева О.С., Сабирова И.Э., Буянова Е.С., Петрова С.А. // Журн. неорган. химии. 2022. Т. 67. № 9. С. 1211. https://doi.org/10.31857/S0044457X22090057
  20. Медведева А.Е., Махонина Е.В., Печень Л.С. и др. // Журн. неорган. химии. 2022. Т. 67. № 7. С. 896. https://doi.org/10.31857/S0044457X22070157
  21. Babaev E.V. // Russ. J. Gen. Chem. 2010. V. 80. P. 2590. https://doi.org/10.1134/S1070363210120261
  22. O’Donnell M.J., Zhou C., Scott W.L. // J. Am. Chem. Soc. 1996. V. 118. P. 6070. https://doi.org/10.1021/ja9601245
  23. Симоненко Т.Л., Симоненко Н.П., Симоненко Е.П., Кузнецов Н.Т. // Журн. неорган. химии. 2022. Т. 67. № 10. С. 1359. https://doi.org/10.31857/S0044457X22600736
  24. Томилин О.Б., Мурюмин Е.Е., Фадин М.В., Щипакин С.Ю. // Журн. неорган. химии. 2022. Т. 67. № 4. С. 457. https://doi.org/10.31857/S0044457X22040195
  25. Wang J., Zhao H., Wen Y. // Electrochim. Acta. 2013. V. 113. P. 679. https://doi.org/10.1016/j.electacta.2013.09.086
  26. Журавлев В.Д., Васильев В Г., Владимирова Е.В. и др. // Физ. хим. стекла. 2010. Т. 36. № 4. С. 632. https://doi.org/10.1134/S1087659610040164
  27. Cardarelli F. Materials handbook. London: Springer-Verlag, 2008. P. 600.
  28. Zhou R.-S., Snyder R. // Acta Crystallogr., Sect. B: Struct. Sci. 1991. V. 47. P. 617. https://doi.org/10.1107/S0108768191002719
  29. Langlet G. // C. R. Acad. Sci. 1964. V. 259. P. 3769.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (243KB)
3.

Baixar (238KB)
4.

Baixar (228KB)
5.

Baixar (254KB)
6.

Baixar (164KB)
7.

Baixar (712KB)
8.

Baixar (919KB)
9.

Baixar (778KB)
10.

Baixar (167KB)

Declaração de direitos autorais © А.В. Федорова, В.А. Столяров, М.Е. Павелина, П.Д. Колоницкий, С.О. Кириченко, А.В. Тимчук, В.Л. Столярова, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies