Na5Rb7Sc2(WO4)9: Yb3+, Er3+: Luminescence Properties and Prospects for Non-Contact Thermometry

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Trigonal solid solutions Na5Rb7Sc1.95Yb0.05 – xErx(WO4)9 (x = 0.0025–0.0375) and Na5Rb7Sc2 – 5y-Yb2yEr3y(WO4)9 (y = 0.005–0.015) based on ternary tungstate Na5Rb7Sc2(WO4)9 have been obtained by ceramic technology and their luminescence properties have been studied. Excitation of powders by infrared radiation of the laser module (λex = 980 nm, Pmax = 45 mW/mm2) leads to the appearance of a bright green emission. The highest intensity of the bands at 515–540 nm (2H11/2 → 4I15/2), 540–575 nm (4S3/2 → 4I15/2), and 645–680 nm (4F9/2 → 4I15/2) is observed for sample Na5Rb7Sc1.95Yb0.02Er0.03(WO4)9. For a given composition, the power and temperature dependences of optical characteristics have been studied, a mechanism for energy transfer between optical centers has been proposed, and chromaticity coordinates have been determined. Based on the data obtained, it has been concluded that Na5Rb7Sc1.95Yb0.02Er0.03(WO4)9 can be used as a material for non-contact luminescent thermometry.

Sobre autores

O. Lipina

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences

Email: chvanova10_99@mail.ru
620990, Yekaterinburg, Russia

T. Spiridonova

Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences

Email: spiridonova-25@mail.ru
670047, Ulan-Ude, Russia

Ya. Baklanova

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences

Email: chvanova10_99@mail.ru
620990, Yekaterinburg, Russia

E. Khaikina

Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences; Dorji Banzarov Buryat State University

Autor responsável pela correspondência
Email: spiridonova-25@mail.ru
670047, Ulan-Ude, Russia; 670000, Ulan-Ude, Russia

Bibliografia

  1. Kaminskii A.A. // Laser Photon. Rev. 2007. V. 1. № 2. P. 93. https://doi.org/10.1002/lpor.200710008
  2. Yu Y., Wu S., Zhu X. et al. // Opt. Mater. 2021. V. 111. P. 110653. https://doi.org/10.1016/j.optmat.2020.110653
  3. Zhang L., Sun S., Lin Z. et al. // J. Lumin. 2018. V. 203. P. 676. https://doi.org/10.1016/j.jlumin.2018.07.016
  4. Xiao B., Huang Y., Zhang L. et al. // PLoS ONE. 2012. V. 7. P. e40229. https://doi.org/10.1371/journal.pone.0040229
  5. Li H., Zhang L., Wang G. // J. Alloys Compd. 2009. V. 478. P. 484. https://doi.org/10.1016/j.jallcom.2008.11.079
  6. Belli P., Bernabei R., Borovlev Yu.A. et al. // Nucl. Instrum. Methods Phys. Res., Sect. A. 2019. V. 935. P. 89. https://doi.org/10.1016/j.nima.2019.05.014
  7. Barabash A.S., Belli P., Bernabei R. et al. // J. Instrumentation. 2011. V. 6. P08011. https://doi.org/10.1088/1748-0221/6/08/P08011
  8. Isupov V.A. // Ferroelectrics. 2005. V. 321. P. 63. https://doi.org/10.1080/00150190500259699
  9. Isupov V.A. // Ferroelectrics. 2005. V. 322. P. 83. https://doi.org/10.1080/00150190500315574
  10. Lind C. // Materials. 2012. V. 5. P. 1125. https://doi.org/10.3390/ma5061125
  11. Rahimi-Nasrabadi M., Pourmortazavi S.M., Ganjali M.R. et al. // J. Mater. Sci. Mater. Electron. 2016. V. 27. P. 12860. https://doi.org/10.1007/s10854-016-5421-5
  12. Mishra S., Choudhary R.N.P., Parida S.K. // Ceram. Int. 2022. V. 48. P. 17020. https://doi.org/10.1016/j.ceramint.2022.02.257
  13. Kaimieva O.S., Sabirova I.E., Buyanova E.S. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1348. [Каймиева О.С. Сабирова И.Э., Буянова Е.С. и др. / Журн. неорган. химии. 2022. Т. 67. P. 1211.]https://doi.org/10.1134/S0036023622090054
  14. Muthamizh S., Suresh R., Giribabu K. et al. // J. Alloys Compd. 2015. V. 619. P. 601. https://doi.org/10.1016/j.jallcom.2014.09.049
  15. Assis M., Tello A.C.M., Abud F.S.A. et al. // Appl. Surf. Sci. 2022. V. 600. P. 154081. https://doi.org/10.1016/j.apsusc.2022.154081
  16. Huang B., Wang H., Liang S. et al. // Energy Stor. Mater. 2020. V. 32. P. 105. https://doi.org/10.1016/j.ensm.2020.07.014
  17. Patil U., Khandare L., Late D.J. // Mater. Sci. Eng.: B. 2022. V. 284. P. 115874. https://doi.org/10.1016/j.mseb.2022.115874
  18. Hosseinpour M., Abdoos H., Mirzaee O. et al. // Ceram. Int. 2023. V. 49. № 3. P. 4722. https://doi.org/10.1016/j.ceramint.2022.09.362
  19. Bravina S.L., Morozovsky N.V., Solodovnikov S.F. et al. // J. Alloys Compd. 2015. V. 649. P. 635. https://doi.org/10.1016/j.jallcom.2015.07.137
  20. Dkhilalli F., Megdiche Borchani S., Rasheed M. et al. // R. Soc. Open Sci. 2018. V. 5. P. 172214. https://doi.org/10.1098/rsos.172214
  21. Durairajan A., Suresh Kumar J., Thangaraju D. et al. // Superlattices Microstruct. 2016. V. 93. P. 308. https://doi.org/10.1016/j.spmi.2016.03.025
  22. Morozov V.A., Batuk D., Batuk M. et al. // Chem. Mater. 2017. V. 29. P. 8811. https://doi.org/10.1021/acs.chemmater.7b03155
  23. Morozov V., Deyneko D., Basovich O. et al. // Chem. Mater. 2018. V. 30. P. 4788. https://doi.org/10.1021/acs.chemmater.8b02029
  24. Keil Ja.-N., Paulsen Ch., Florian R. et al. // Dalton Trans. 2021. V. 50. P. 9225. https://doi.org/10.1039/d1dt00795e
  25. Wei B., Liu Zh., Xie Ch. et al. // J. Mater. Chem. C. 2015. V. 3. P. 12322. https://doi.org/10.1039/C5TC03165F
  26. Yang Y., Li F., Lu Y. et al. // J. Lumin. 2022. V. 251. P. 119234. https://doi.org/10.1016/j.jlumin.2022.119234
  27. Zhang J., Jin C. // J. Alloys Compd. 2019. V. 783. P. 89. https://doi.org/10.1016/j.jallcom.2018.12.281
  28. Yun R., He J., Luo L. et al. // Ceram. Int. 2021. V. 47. P. 16062. https://doi.org/10.1016/j.ceramint.2021.02.180
  29. Lim Ch.S., Aleksandrovsky A., Molokeev M. et al. // J. Solid State Chem. 2015. V. 228. P. 160. https://doi.org/10.1016/j.jssc.2015.04.032
  30. Bin X., Lin Zh., Zhang L. et al. // PLoS One. 2012. V. 7. № 7. e40631. https://doi.org/10.1371/journal.pone.0040631
  31. Van der Ende B.M., Aarts L., Meijerink A. // Phys. Chem. Chem. Phys. 2009. V. 11. P. 11081. https://doi.org/10.1039/B913877C
  32. Khare A. // J. Alloys Compd. 2020. V. 821. P. 153214. https://doi.org/10.1016/j.jallcom.2019.153214
  33. Xiang G.T., Liu X.T., Xia Q. et al. // Talanta. 2021. V. 224. P. 121832. https://doi.org/10.1016/j.talanta.2020.121832
  34. Rafique R., Baek S.H., Phan L.M.T. et al. // Mater. Sci. Eng. C. 2019. V. 99. P. 1067. https://doi.org/10.1016/j.msec.2019.02.046
  35. Bai. X., Cun Y., Xu Z. et al. // Chem. Eng. J. 2022. V. 429. P. 132333. https://doi.org/10.1016/j.cej.2021.132333
  36. Brites C.D.S., Millán A., Carlos L.D. // Handb. Phys. Chem. Rare Earths. 2016. V. 49. P. 339. https://doi.org/10.1016/bs.hpcre.2016.03.005
  37. Dramićanin M. Chapter 6 – Lanthanide and Transition Metal Ion Doped Materials for Luminescence Temperature Sensing in Luminescence Thermometry: Methods, Materials, and Applications, Woodhead Publishing Series in Electronic and Optical Materials. 2018. P. 113. https://doi.org/10.1016/B978-0-08-102029-6.00006-3
  38. Wu Y., Suo H., He D. et al. // Mater. Res. Bull. 2018. V. 106. P. 14. https://doi.org/10.1016/j.materresbull.2018.05.019
  39. Peng S., Lai F., Xiao Z. et al. // J. Lumin. 2022. V. 242. P. 118569. https://doi.org/10.1016/j.jlumin.2021.118569
  40. Chen L., He K., Bai G. et al. // J. Alloys Compd. 2020. V. 846. P. 156425. https://doi.org/10.1016/j.jallcom.2020.156425
  41. Zhang J., Chen J., Jin C. // J. Alloys Compd. 2020. V. 846. P. 156397. https://doi.org/10.1016/j.jallcom.2020.156397
  42. Lipina O.A., Surat L.L., Chufarov A.Yu. et al. // Mendeleev Commun. 2021. V. 31. P. 113. https://doi.org/10.1016/j.mencom.2021.01.035
  43. Lipina O.A., Surat L.L., Melentsova A.A. et al. // Phys. Solid State. 2021. V. 63. P. 1036. [Липина О.А., Сурат Л.Л., Меленцова А.А. и др. // ФТТ. 2021. Т. 63. С. 944.]https://doi.org/10.1134/S1063783421070143
  44. Lim Ch.S., Atuchin V.V., Aleksandrovsky A.S. et al. // Mater. Lett. 2016. V. 181. P. 38. https://doi.org/10.1016/j.matlet.2016.05.121
  45. Zhou Y., Yan B., He X.-H. // J. Mater. Chem. C. 2014. V. 2. P. 848. https://doi.org/10.1039/c3tc31880j
  46. Jain A., Ong Sh. P., Hautier G. et al. // APL Materials. 2013. V. 1. P. 011002. https://doi.org/10.1063/1.4812323
  47. ICDD PDF-2 Data Base, Cards ## 01-074-2369, 01-073-2342, 01-089-4691
  48. Rietveld H.M. // J. Appl. Crystallogr. 1969. V. 2. P. 65. https://doi.org/10.1107/S0021889869006558
  49. Bruker AXS TOPAS V4: General profile and structure analysis software for powder diffraction data. User’s Manual. Bruker AXS, Karlsruhe, Germany. 2008.
  50. Spiridonova T.S., Solodovnikov S.F., Molokeev M.S. et al. // J Solid State Chem. 2022. V. 305. P. 122638. https://doi.org/10.1016/j.jssc.2021.122638
  51. Spiridonova T.S., Savina A.A., Kovtunets E.V. et al. // Chimica Techno Acta. 2021. V. 8. P. 20218412. https://doi.org/10.15826/chimtech.2021.8.4.12
  52. Basovich O.M., Uskova A.A., Solodovnikov S.F. et al. // Vest. Buryats Gos. Univ. Khim. Fiz. 2011. V. 3. P. 24. In Russian. [Басович О.М., Ускова А.А., Солодовников С.Ф. и др. // Вестник Бурятского государственного университета. 2011. Т. 3. С. 24.]
  53. Khaikina E.G., Solodovnikov S.F., Basovich O.M. et al. // Chimica Techno Acta. 2015. V. 2. № 4. P. 356. https://doi.org/10.15826/chimtech.2015.2.4.032
  54. Shannon R.D. // Acta Crystallogr. 1976. V. A32. P. 751. https://doi.org/10.1107/S0567739476001551
  55. Huang L., Liu X., Hu W. et al. // J. Appl. Phys. 2001. V. 90. P. 5550. https://doi.org/10.1063/1.1413494
  56. Singh S.K., Kumar K., Rai S.B. // Appl. Phys. B: Lasers Opt. 2009. V. 94. P. 165. https://doi.org/10.1007/s00340-008-3261-6
  57. Singh S.K., Singh A.K., Kumar D. et al. // Appl. Phys. B: Lasers Opt. 2010. V. 98. P. 173. https://doi.org/10.1007/s00340-009-3711-9
  58. Pokhrel M., Kumar G.A., Sardar D.K. // J. Mater. Chem. A. 2013. V. 1. P. 11595. https://doi.org/10.1039/C3TA12205K
  59. Georgescu S., Voiculescu A.M., Matei C. et al. // Phys. B. 2013. V. 413. P. 55. https://doi.org/10.1016/j.physb.2012.12.045
  60. Singh V., Rai V.K., Al-Shamery K. et al. // Spectrochim. Acta, Part A. 2013. V. 108. P. 141. https://doi.org/10.1016/j.saa.2013.01.073
  61. Lipina O.A., Surat L.L., Tyutyunnik A.P. et al. // Opt. Mater. 2016. V. 61. P. 98. https://doi.org/10.1016/j.optmat.2016.05.031
  62. Pollnau M., Gamelin D.R., Lüthi S.R. et al. // Phys. Rev. B. 2020. V. 61. P. 3337.
  63. Auzel F. // C.R. Acad. Sci. 1966. V. 263. P. 819.
  64. Anderson R.B., Smith S.J., May P.S. et al. // J. Phys. Chem. Lett. 2014. V. 5. P. 36. https://doi.org/10.1021/jz402366r
  65. McCamy C.S. // Color Res. Appl. 1992. V. 17. P. 142. https://doi.org/10.1002/col.5080170211
  66. Kelly K.L. // J. Opt. Soc. Am. 1943. V. 33. P. 627. https://doi.org/10.1364/JOSA.33.000627

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (653KB)
3.

Baixar (497KB)
4.

Baixar (299KB)
5.

Baixar (68KB)
6.

Baixar (104KB)
7.

Baixar (121KB)
8.

Baixar (294KB)

Declaração de direitos autorais © О.А. Липина, Т.С. Спиридонова, Я.В. Бакланова, Е.Г. Хайкина, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies