A Microstructural Study of the InSb〈Ni, Mn〉 alloy

Capa

Citar

Texto integral

Resumo

The InSb + 1 at % Ni + 1 at % Mn alloy was studied by optical microscopy and scanning electron microscopy. A Heusler phase based on NiMnSb in the form of microinclusions on InSb dislocations was detected. The chemical composition of the microinclusions on dislocation pile-ups ranges from Ni1.1MnSb to Ni1.2MnSb, and that on individual dislocations is close to Ni1.1MnSb. However, the synthesis gives rise to bulk structural defects in the form of micropores and to elastic deformations around them, which are the main obstacles to the creation of a coherent material with unhindered movement of polarized electrons throughout the volume.

Sobre autores

V. Sanygin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: sanygin@igic.ras.ru
Rússia, Leninskii pr. 31, Moscow, 119991

O. Pashkova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: sanygin@igic.ras.ru
119991, Moscow, Russia

Bibliografia

  1. Acet M., Manosa L., Planes A. // Handbook of Magnetic Materials. 2011. V. 19. P. 231. https://doi.org/10.1016/B978-0-444-53780-5.00004-1
  2. Ril A.I., Marenkin S.F. // Russ. J. Inorg. Chem. 2022. V. 67. № 13. P. 2113. https://doi.org/10.1134/S0036023622601684
  3. Еремеев С.В., Бакулин А.В., Кулькова С.Е. // ЖЭТФ. 2009. Т. 136. № 2. С. 393.
  4. Еремеев С.В., Кульков С.С., Кулькова С.Е. // Физика твердого тела. 2008. Т. 50. № 2. С. 250.
  5. Galanakis I., Lezaik M., Bihlmayer G., Blugel S. // Phys. Rev. B. 2005. V. 71. № 21. P. 214431. https://doi.org/10.1103/PhysRevB.71.214431
  6. Wijs G.A., Groot R.A. // Phys. Rev. B. 2001. V. 64. P. 020402. https://doi.org/10.1103/PhysRevB.64.020402
  7. Sozinov A., Likhachev A.A., Lanska N., Ullakko K. // Appl. Phys. Lett. 2002. V. 80. № 10. P. 1746. https://doi.org/10.1063/1.1458075
  8. Khan M., Dubenko I., Stadler S., Ali N. // J. Phys.: Condens. Matter. 2008. V. 20. № 23. P. 235204. https://doi.org/10.1088/0953-8984/20/23/235204
  9. Chatterjee S., Giri S., Majumdar S. et al. // J. Phys.: Condens. Matter. 2007. V. 19. № 34. P. 346213. https://doi.org/10.1088/0953-8984/19/34/346213
  10. Krenke T., Duman E., Acet M. et al. // Nature Materials. 2005. T. 4. № 6. P. 450. https://doi.org/10.1038/nmat1395
  11. Du J., Zheng Q., Ren W. J. et al. // J. Phys. D: Appl. Phys. 2007. V. 40. № 18. P. 5523. https://doi.org/10.1088/0022-3727/40/18/001
  12. Sutou Y., Imano Y., Koeda N. et al. // Appl. Phys. Lett. 2004. V. 85. № 19. P. 4358. https://doi.org/10.1063/1.1808879
  13. Dubenko I., Pathak A., Stadler S. et al. // Phys. Rev. B. 2009. V. 80. P. 092408. https://doi.org/10.1103/PhysRevB.80.092408
  14. Gardelis S., Androulakis J., Migiakis P. et al. // J. Appl. Phys. 2004. V. 95. № 12. P. 8063. https://doi.org/10.1063/1.1739293
  15. Gardelis S., Androulakis J., Monnereau O. et al. // J. Phys.: Conference Series. Second Conference on Microelectronics, Microsystems and Nanotechnology. 2005. V. 10. P. 167. https://doi.org/10.1088/1742-6596/10/1/041
  16. Wang F.F., Fukuhara T., Maezawa K. et al. // Jpn. J. Appl. Phys. 2010. V. 49. № 2. P. 25502. https://doi.org/10.1143/JJAP.49.025502
  17. Groot R.F., Mueller F.M. // Phys. Rev. Lett. 1983. V. 50. № 25. P. 2024.
  18. Ryba T., Vargova Z., Varga R. et al. // Acta Phys. Pol., A. 2014. V. 126. № 1. P. 206. https://doi.org/10.12693/APhysPolA.126.206
  19. Ritchie L., Xiao G., Ji Y. et al. // Phys. Rev. B. 2003. V. 68. № 10. P. 104430. https://doi.org/10.1103/PhysRevB.68.104430
  20. Новиков И.И. Теория термической обработки металлов. М.: Металлургия, 1978. 392 с.
  21. Пашкова О.Н., Изотов А.Д., Саныгин В.П. и др. // Неорган. материалы. 2019. Т. 55. № 9. С. 941. https://doi.org/10.1134/S0002337X19090148
  22. Пашкова О.Н., Саныгин В.П., Иванов В.А. и др. // Неорган. материалы. 2006. Т. 42. № 5. С. 519.
  23. Саныгин В.П., Лобанов Н.Н., Изотов А.Д. и др. // Неорган. материалы. 2014. Т. 50. № 9. С. 968. https://doi.org/10.7868/S0002337X14090139
  24. Кащенко Г.А. Основы металловедения. М.: Металлургиздат, 1950. 640 с.
  25. Webster P.J., Mankikar R.M. // J. Magn. Magn. Mater. 1984. V. 42. № 3. P. 300. https://doi.org/10.1016/0304-8853(84)90113-6
  26. Физико-химические свойства полупроводниковых веществ. Справочник. М.: Наука, 1979.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (1MB)
4.

Baixar (1MB)
5.

Baixar (2MB)

Declaração de direitos autorais © В.П. Саныгин, О.Н. Пашкова, 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).