Hydrothermal Synthesis of Silver Sulfide

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Silver sulfide powders with submicro- and micrometer particle sizes have been synthesized by the hydrothermal method at temperatures from 373 to 453 K in aqueous and alcoholic solutions of silver nitrate, sodium sulfide and citrate, sulfur, and thiocarbamide. The crystal structures of the synthesized powders, morphology, composition, and particle size of silver sulfide have been analyzed by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray analysis, and gas adsorption. The powder particles have a similar morphology in the form of rectangular parallelepipeds and cubes with smoothed edges; the size of the powder particles depends on the synthesis conditions and ranges from ~500 to 2000 nm.

Sobre autores

S. Sadovnikov

Institute of Solid-State Chemistry, Ural Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: sadovnikov@ihim.uran.ru
620990, Yekaterinburg, Russia

Bibliografia

  1. Sadovnikov S.I., Gusev A.I. // J. Mater. Chem. A. 2017. V. 5. № 34. P.17676. https://doi.org/10.1039/C7TA04949H
  2. Wang X., Yang S., Ma S. et al. // Catal. Sci. Technol. 2016. V. 6. № 1. P. 242. https://doi.org/10.1039/C5CY00787A
  3. Gao L., Li Z., Liu J. // RSC Adv. 2017. V. 7. № 44. P. 27515. https://doi.org/10.1039/C7RA03955G
  4. Yang Y., Ashraf M.A., Fakhri A. et al. // Spectrochim. Acta A. 2021. V. 249. P. 119324. 7 pp. https://doi.org/10.1016/j.saa.2020.119324
  5. Yang C., Li T., Guo Y. et al. // Spectrochim. Acta A. 2022. V. 273. P. 121048. https://doi.org/10.1016/j.saa.2022.121048
  6. Ren Z., Shen C., Yuan K. et al. // Mater. Today Commun. 2022. V. 31. P. 103719. https://doi.org/10.1016/j.mtcomm.2022.103719
  7. Igbal M.W., Faisal M.M., Hassan ul H. et al. // J. Energy Stor. 2022. V. 52. Part A. P. 104847. 8 pp. https://doi.org/10.1016/j.est.2022.104847
  8. Hassan H.U., Igbal M.W., Afzal A.M. et al. // Intern. J. Energy Res. 2022. V. 46. № 8. P. 11346. https://doi.org/10.1002/er.7932
  9. Li C.V., Ding S.-N. // Anal. Methods. 2015. V. 7. № 10. P. 4348. https://doi.org/10.1039/C5AY00685F
  10. Lim W.P., Zhang Z., Low H.Y. et al. // Angew. Chem. Int. Ed. 2004. V. 43. № 42. P. 5685. https://doi.org/10.1002/anie.200460566
  11. Wang X.B., Liu W.M., Hao J.C. et al. // Chem. Lett. 2005. V. 34. № 12. P. 1664. https://doi.org/10.1246/cl.2005.1664
  12. Dong L.H., Chu Y., Liu Y. // J. Colloid Interface Sci. 2008. V. 317. № 2. P. 485. https://doi.org/10.1016/j.jcis.2007.09.055
  13. Chen M.H., Gao L. // Mater. Lett. 2006. V.60. № 8. P. 1059. https://doi.org/10.1016/j.matlet.2005.10.077
  14. Zhang C.L., Zhang S.M., Yu L.G. et al. // Mater. Lett. 2012. V. 85. P. 77. https://doi.org/10.1016/j.matlet.2012.06.112
  15. Lv L.Y., Wang H. // Mater. Lett. 2014. V. 121. P. 105. https://doi.org/10.1016/j.matlet.2014.01.121
  16. Sadovnikov S.I., Gusev A.I., Rempel A.A. // Superlat. Microstr. 2015. V. 83. P. 35. https://doi.org/10.1016/j.spmi.2015.03.024
  17. Sadovnikov S.I., Gusev A.I., Chukin A.V. et al. // Phys. Chem. 2016. V. 18. № 6. P. 4617. https://doi.org/10.1039/c5cp07224g
  18. Kaowphong S. // J. Solid State Chem. 2012. V. 189. P. 108. https://doi.org/10.1016/j.jssc.2011.12.010
  19. Sadovnikov S.I. // Russ. J. Inorg. Chem. 2019. V. 64. № 10. P. 1309. https://doi.org/10.1134/S0036023619100115
  20. Khaleelullah M.M.S.I., Dheivasigamani T., Natarajan P. et al. // J. Cryst. Growth. 2017. V. 468. P. 119. https://doi.org/10.1016/j.jcrysgro.2016.10.081
  21. Chen Y., Liang Y., Li T. et al. // J. Colloid Interface Sci. 2019. V. 555. https://doi.org/10.1016/j.jcis.2019.08.026
  22. Munaro J., Dolceta P., Nappini S. et al. // Appl. Surf. Sci. 2020. V. 514. P. 145856. 9 pp. https://doi.org/10.1016/j.apsusc.2020.145856
  23. Sadovnikov S.I., Kozlova E.A., Gerasimov E.Yu. et al. // Int. J. Hydrogen. Energy. 2017. V. 42. № 40. P. 25258. https://doi.org/10.1016/j.ijhydene.2017.08.145
  24. Match! Version 1.10. Phase Identification from Powder Diffraction © 2003-2010 Crystal Impact.
  25. X’Pert HighScore Plus. Version 2.2e (2.2.5). PANalytical B. V. Almedo, the Netherlands.
  26. Brunauer S., Emmett P.H., Teller E. // J. Am. Chem. Soc. 1938. V. 60. № 2. P. 309. https://doi.org/10.1021/ja01269a023
  27. Sadovnikov S.I., Gusev A.I., Gerasimov E.Yu. et al. // Chem. Phys. Lett. 2015. V. 642. P. 17. http//doi.org/https://doi.org/10.1016/j.cplett.2015.11.004
  28. Greg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity. London: Acad. Press, 1982. 304 p.
  29. http://webbook.nist.gov/chemistry/
  30. Perrott C.M., Fletcher N.H. // J. Chem. Phys. 1969. V. 50. № 6. P. 2344. https://doi.org/10.1063/1.1671386
  31. Thompson W.T., Flengas S.N. // Can. J. Chem. 1971. V. 49. № 9. P. 1550. https://doi.org/10.1139/v71-252
  32. Okazaki H., Takano A. // Z. Naturforsch. A. 1985. V. 40. № 10. P. 986. https://doi.org/10.1515/zna-1985-1004
  33. Grønvold F., Westrum E.F. // J. Chem. Thermodin. 1986. V. 18. № 4. P. 381. https://doi.org/10.1016/0021-9614(86)90084-4

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (614KB)
3.

Baixar (644KB)
4.

Baixar (685KB)
5.

Baixar (120KB)
6.

Baixar (126KB)

Declaração de direitos autorais © С.И. Садовников, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies