Hydrothermal Synthesis of Silver Sulfide

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Silver sulfide powders with submicro- and micrometer particle sizes have been synthesized by the hydrothermal method at temperatures from 373 to 453 K in aqueous and alcoholic solutions of silver nitrate, sodium sulfide and citrate, sulfur, and thiocarbamide. The crystal structures of the synthesized powders, morphology, composition, and particle size of silver sulfide have been analyzed by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray analysis, and gas adsorption. The powder particles have a similar morphology in the form of rectangular parallelepipeds and cubes with smoothed edges; the size of the powder particles depends on the synthesis conditions and ranges from ~500 to 2000 nm.

Авторлар туралы

S. Sadovnikov

Institute of Solid-State Chemistry, Ural Branch, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: sadovnikov@ihim.uran.ru
620990, Yekaterinburg, Russia

Әдебиет тізімі

  1. Sadovnikov S.I., Gusev A.I. // J. Mater. Chem. A. 2017. V. 5. № 34. P.17676. https://doi.org/10.1039/C7TA04949H
  2. Wang X., Yang S., Ma S. et al. // Catal. Sci. Technol. 2016. V. 6. № 1. P. 242. https://doi.org/10.1039/C5CY00787A
  3. Gao L., Li Z., Liu J. // RSC Adv. 2017. V. 7. № 44. P. 27515. https://doi.org/10.1039/C7RA03955G
  4. Yang Y., Ashraf M.A., Fakhri A. et al. // Spectrochim. Acta A. 2021. V. 249. P. 119324. 7 pp. https://doi.org/10.1016/j.saa.2020.119324
  5. Yang C., Li T., Guo Y. et al. // Spectrochim. Acta A. 2022. V. 273. P. 121048. https://doi.org/10.1016/j.saa.2022.121048
  6. Ren Z., Shen C., Yuan K. et al. // Mater. Today Commun. 2022. V. 31. P. 103719. https://doi.org/10.1016/j.mtcomm.2022.103719
  7. Igbal M.W., Faisal M.M., Hassan ul H. et al. // J. Energy Stor. 2022. V. 52. Part A. P. 104847. 8 pp. https://doi.org/10.1016/j.est.2022.104847
  8. Hassan H.U., Igbal M.W., Afzal A.M. et al. // Intern. J. Energy Res. 2022. V. 46. № 8. P. 11346. https://doi.org/10.1002/er.7932
  9. Li C.V., Ding S.-N. // Anal. Methods. 2015. V. 7. № 10. P. 4348. https://doi.org/10.1039/C5AY00685F
  10. Lim W.P., Zhang Z., Low H.Y. et al. // Angew. Chem. Int. Ed. 2004. V. 43. № 42. P. 5685. https://doi.org/10.1002/anie.200460566
  11. Wang X.B., Liu W.M., Hao J.C. et al. // Chem. Lett. 2005. V. 34. № 12. P. 1664. https://doi.org/10.1246/cl.2005.1664
  12. Dong L.H., Chu Y., Liu Y. // J. Colloid Interface Sci. 2008. V. 317. № 2. P. 485. https://doi.org/10.1016/j.jcis.2007.09.055
  13. Chen M.H., Gao L. // Mater. Lett. 2006. V.60. № 8. P. 1059. https://doi.org/10.1016/j.matlet.2005.10.077
  14. Zhang C.L., Zhang S.M., Yu L.G. et al. // Mater. Lett. 2012. V. 85. P. 77. https://doi.org/10.1016/j.matlet.2012.06.112
  15. Lv L.Y., Wang H. // Mater. Lett. 2014. V. 121. P. 105. https://doi.org/10.1016/j.matlet.2014.01.121
  16. Sadovnikov S.I., Gusev A.I., Rempel A.A. // Superlat. Microstr. 2015. V. 83. P. 35. https://doi.org/10.1016/j.spmi.2015.03.024
  17. Sadovnikov S.I., Gusev A.I., Chukin A.V. et al. // Phys. Chem. 2016. V. 18. № 6. P. 4617. https://doi.org/10.1039/c5cp07224g
  18. Kaowphong S. // J. Solid State Chem. 2012. V. 189. P. 108. https://doi.org/10.1016/j.jssc.2011.12.010
  19. Sadovnikov S.I. // Russ. J. Inorg. Chem. 2019. V. 64. № 10. P. 1309. https://doi.org/10.1134/S0036023619100115
  20. Khaleelullah M.M.S.I., Dheivasigamani T., Natarajan P. et al. // J. Cryst. Growth. 2017. V. 468. P. 119. https://doi.org/10.1016/j.jcrysgro.2016.10.081
  21. Chen Y., Liang Y., Li T. et al. // J. Colloid Interface Sci. 2019. V. 555. https://doi.org/10.1016/j.jcis.2019.08.026
  22. Munaro J., Dolceta P., Nappini S. et al. // Appl. Surf. Sci. 2020. V. 514. P. 145856. 9 pp. https://doi.org/10.1016/j.apsusc.2020.145856
  23. Sadovnikov S.I., Kozlova E.A., Gerasimov E.Yu. et al. // Int. J. Hydrogen. Energy. 2017. V. 42. № 40. P. 25258. https://doi.org/10.1016/j.ijhydene.2017.08.145
  24. Match! Version 1.10. Phase Identification from Powder Diffraction © 2003-2010 Crystal Impact.
  25. X’Pert HighScore Plus. Version 2.2e (2.2.5). PANalytical B. V. Almedo, the Netherlands.
  26. Brunauer S., Emmett P.H., Teller E. // J. Am. Chem. Soc. 1938. V. 60. № 2. P. 309. https://doi.org/10.1021/ja01269a023
  27. Sadovnikov S.I., Gusev A.I., Gerasimov E.Yu. et al. // Chem. Phys. Lett. 2015. V. 642. P. 17. http//doi.org/https://doi.org/10.1016/j.cplett.2015.11.004
  28. Greg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity. London: Acad. Press, 1982. 304 p.
  29. http://webbook.nist.gov/chemistry/
  30. Perrott C.M., Fletcher N.H. // J. Chem. Phys. 1969. V. 50. № 6. P. 2344. https://doi.org/10.1063/1.1671386
  31. Thompson W.T., Flengas S.N. // Can. J. Chem. 1971. V. 49. № 9. P. 1550. https://doi.org/10.1139/v71-252
  32. Okazaki H., Takano A. // Z. Naturforsch. A. 1985. V. 40. № 10. P. 986. https://doi.org/10.1515/zna-1985-1004
  33. Grønvold F., Westrum E.F. // J. Chem. Thermodin. 1986. V. 18. № 4. P. 381. https://doi.org/10.1016/0021-9614(86)90084-4

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (614KB)
3.

Жүктеу (644KB)
4.

Жүктеу (685KB)
5.

Жүктеу (120KB)
6.

Жүктеу (126KB)

© С.И. Садовников, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>