Ba2Gd2 – xSmxGe4O13: Luminescence Properties, Prospects for Non-Contact Temperature Sensing Applications and Light-Emitting Diodes

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Tetragermanates Ba2Gd2 – xSmxGe4O13 (x = 0.025–0.8) have been synthesized by the solid-phase method. Solid solutions crystallize in the monoclinic crystal system (space group С2/с, Z = 4) and are members of a small family of inorganic compounds containing [Ge4O13]10– anions. The photoluminescence properties of germanates upon excitation by radiation with λex = 275 nm have been studied. The spectra of the compounds show a broad band with a maximum at 313 nm and a set of lines in the range of 525–730 nm, corresponding to intraconfigurational 4f–4f transitions in Gd3+ and Sm3+ ions. It has been found that germanate Ba2Gd1.95Sm0.05Ge4O13 has the maximum luminescence intensity. For this sample, the color characteristics and the temperature dependences of the intensity ratios of the main luminescence bands upon heating to 498 K have been studied. It has been concluded that Ba2Gd1.95Sm0.05Ge4O13 can be used as a material for non-contact temperature sensing and light emitting diodes.

Palavras-chave

Sobre autores

A. Chvanova

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences

Email: chvanova10_99@mail.ru
620990, Yekaterinburg, Russia

O. Lipina

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences

Email: chvanova10_99@mail.ru
620990, Yekaterinburg, Russia

A. Chufarov

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences

Email: chvanova10_99@mail.ru
620990, Yekaterinburg, Russia

A. Tyutyunnik

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences

Email: chvanova10_99@mail.ru
620990, Yekaterinburg, Russia

Ya. Baklanova

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences

Email: chvanova10_99@mail.ru
620990, Yekaterinburg, Russia

L. Surat

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences

Email: chvanova10_99@mail.ru
620990, Yekaterinburg, Russia

V. Zubkov

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: chvanova10_99@mail.ru
620990, Yekaterinburg, Russia

Bibliografia

  1. Brites C.D.S., Millán A., Carlos L.D. // Handb. Phys. Chem. Rare Earths. 2016. V. 49. P. 339. https://doi.org/10.1016/bs.hpcre.2016.03.005
  2. Brites C.D.S., Lima P.P., Silva et al. // Nanoscale. 2012. V. 4. P. 4799. https://doi.org/10.1039/C2NR30663H
  3. Rai V.K., Rai S.B. // Appl. Phys. B. 2007. V. 87. P. 323. https://doi.org/10.1007/s00340-007-2592-z
  4. Dramićanin M. Chapter 6 – Lanthanide and Transition Metal Ion Doped Materials for Luminescence Temperature Sensing in Luminescence Thermometry: Methods, Materials, and Applications, Woodhead Publishing Series in Electronic and Optical Materials. 2018. P. 113–157.
  5. Zhu K., Zhou H., Qiu J. et al. // J. Alloys Compd. 2021. V. 890. P. 161844. https://doi.org/10.1016/j.jallcom.2021.161844
  6. Nikolić M.G., Jovanović D.J., Đorđević V. et al. // Phys. Scr. 2012. P. 014063. https://doi.org/10.1088/0031-8949/2012/T149/014063
  7. Suta M., Mejerink A. // Adv. Theory Simul. 2020. V. 3. P. 2000176. https://doi.org/10.1002/adts.202000176
  8. Li J., Yan J., Wen D. et al. // J. Mater. Chem. C. 2016. V. 4. P. 8611. https://doi.org/10.1039/C6TC02695H
  9. Ma Y., Tang S., Ji C. et al. // J. Lumin. 2022. V. 242. P. 118530. https://doi.org/10.1016/j.jlumin.2021.118530
  10. Ji C., Huang Z., Tian X. et al. // J. Alloys Compd. 2020. V. 825. P. 154176. https://doi.org/10.1016/j.jallcom.2020.154176
  11. Ji C., Huang Z., Tian X. et al. // J. Lumin. 2021. V. 232. P. 117775. https://doi.org/10.1016/j.jlumin.2020.117775
  12. Singh V., Lakshminarayana G., Singh N. // Optik. 2020. V. 211. P. 164272. https://doi.org/10.1016/j.ijleo.2020.164272
  13. Liu H., Guo S., Hao Y. et al. // J. Lumin. 2012. V. 132. № 11. P. 2908. https://doi.org/10.1016/j.jlumin.2012.06.006
  14. Mei L., Liu H., Liao L. et al. // Scientif. Rep. 2017. V. 7. P. 15171. https://doi.org/10.1038/s41598-017-15595-z
  15. Helode S.J., Kadam A.R., Dhoble S.J. // Chem. Data Collect. 2020. V. 40. P. 100881. https://doi.org/10.1016/j.cdc.2022.100881
  16. Денисова Л.Т., Молокеев М.С., Каргин Ю.Ф. и др. // Журн. неорган. химии. 2021. Т. 66. № 12. С. 1700. https://doi.org/10.1134/S0036023621120020
  17. Горбунов Ю.А., Максимов Б.А., Белов Н.В. // Докл. АН СССР. 1973. Т. 211. С. 591.
  18. Masuda T., Chakoumakos B.C., Nygren C.L. et al. // J. Solid State Chem. 2003. V. 176. P. 175. https://doi.org/10.1016/S0022-4596(03)00387-6
  19. Redhammer G.J., Roth G. // J. Solid State Chem. 2004. V. 177. P. 2714. https://doi.org/10.1016/j.jssc.2004.04.016
  20. Sanjeewa L.D., McGuire M.A., McMillen C.D. et al. // Chem. Mater. 2017. V. 29. P. 1404. https://doi.org/10.1021/acs.chemmater.6b05320
  21. Ananias D., Paz F.A.A., Carlos L.D. et al. // Eur. J. Inorg. Chem. 2018. V. 2018. № 20. P. 2444. https://doi.org/10.1002/ejic.201800153
  22. Tyutyunnik A.P., Chufarov A.Yu., Surat L.L. et al. // Mendeleev Commun. 2018. V. 28. P. 661. https://doi.org/10.1016/j.mencom.2018.11.035
  23. Lipina O.A., Surat L.L., Chufarov A.Y. et al. // Dalton Trans. 2021. V. 50. P. 10935. https://doi.org/10.1039/d1dt01780b
  24. Toby B.H. // J. Appl. Crystallogr. B. 2001. V. 34. P. 210. https://doi.org/10.1107/S0021889801002242
  25. Larson A.C., Von Dreele R.B. General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748, Los Alamos, NM, 2004.
  26. Shannon R.D. // Acta Crystallogr., Sect. A. 1976. V. 32. P. 751. https://doi.org/10.1107/S0567739476001551
  27. Ullah I., Shah S.K., Rooh G. et al. // Opt. Mater. 2021. V. 111. P. 110657. https://doi.org/10.1016/j.optmat.2020.110657
  28. Baklanova Y.V., Maksimova L.G., Lipina O.A. et al. // J. Lumin. 2020. V. 224. P. 117315. https://doi.org/10.1016/j.jlumin.2020.117315
  29. Wantana N., Kaewjaeng S., Kothan S. et al. // J. Lumin. 2017. V. 181. P. 382. https://doi.org/10.1016/j.jlumin.2016.09.050
  30. He J., Zhang S., Zhou J. et al. // Opt. Mater. 2015. V. 39. P. 81. https://doi.org/10.1016/j.optmat.2014.11.002
  31. Li Y., Dvořák M., Nesterenko P.N. et al. // Sens. Actuators B. 2018. V. 255. P. 1238. https://doi.org/10.1016/j.snb.2017.08.085
  32. Kelly K.L. // J. Opt. Soc. Am. 1943. V. 33. P. 627. https://doi.org/10.1364/JOSA.33.000627

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (815KB)
3.

Baixar (774KB)
4.

Baixar (120KB)
5.

Baixar (149KB)
6.

Baixar (102KB)
7.

Baixar (245KB)
8.

Baixar (663KB)
9.

Baixar (117KB)

Declaração de direitos autorais © А.В. Чванова, О.А. Липина, А.Ю. Чуфаров, А.П. Тютюнник, Я.В. Бакланова, Л.Л. Сурат, В.Г. Зубков, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies