DFT Modeling of Isomerism of Doped Mg24L2 Clusters with Dopants L at the Surface and inside the Magnesium Cage

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The isomers of Mg24L2 nanoclusters with dopants L from the firt three periods (L = Li–Zn) in the exo- and endohedral positions of the magnesium cage have been calculated by the density functional theory (DFT) method. The effect of dopants on the structure, stability, and position on the energy scale has been studied. For the systems with atoms L = H, Li, Be N, Na, Co, and Cu, the “open” positions of dopants at the surface are more favorable, unlike their analogs with L = Be and B, for which the “closed” positions in the inner cavity of the cluster are more favorable and their promotion to the surface requires a significant energy input. For clusters with O, Si, P, S, and early 3d metal atoms, the differences in the energies of the exo- and endohedral isomers do not exceed a few kcal/mol. The atoms of the second half of the 3d series are characterized by their association into diatomic dopants L2. The results are compared with the data of similar DFT calculations of isomers of Al42L2 aluminum clusters with the same dopants L = Li–Zn and are of interest for modeling the mechanisms of catalytic hydrogenation of magnesium and aluminum nanoclusters at the molecular level.

Palavras-chave

Sobre autores

O. Charkin

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: rusjinorgchem@yandex.ru
142432, Chernogolovka, Moscow oblast, Russia

Bibliografia

  1. Kawazoe Y., Kondow T., Ohno K. Clusters and Nanomaterials. Berlin: Springer-Verlag, 2002. ISBN: 978-3-662-04812-2
  2. Rienstra-Kirakofe J.C., Schumper G.S., Shaefer H.F. et al. // Chem. Rev. 2002. V. 102. P. 231. https://doi.org/10.1021/cr990044u
  3. Kuznetsov A.E., Birch K.A., Boldyrev A.I. et al. // Science. 2003. V. 300. P. 622. https://doi.org/10.1126/science.1082477
  4. Charkin O.P., Klimenko N.M., Charkin D.O. et al. // Faraday Discuss. 2003. V. 124. P. 215. https://doi.org/10.1039/B211114D
  5. Janssens E., Neukermans S., Lievens P. // Curr. Opin. Solid State Mater. Sci. 2004. V. 8. P. 185. https://doi.org/10.1016/j.cossms.2004.09.002
  6. Bailey M.S., Wilson N.T., Roberts C. et al. // Eur. Phys. J. D. 2003. V. 25. P. 41. https://doi.org/10.1140/epjd/e2003-00218-2
  7. Brodova I.G., Shirinkina I.G., Petrova A.N. // Lett. Mat. 2011. V. 1. P. 32. https://doi.org/10.22226/2410-3535-2011-1-32-35
  8. Hua Y., Lin Y., Jang G. et al. // J. Phys. Chem. A. 2013. V. 117. P. 2590. https://doi.org/10.1021/jp309629y
  9. Ko Y.J., Shakya A., Wang H.P. et al. // J. Chem. Phys. 2010. V. 133. P. 124308. https://doi.org/10.1063/1.3490401
  10. Lang S.M., Claes P., Neukermans S. et al. // J. Am. Soc. Mass Spectrom. 2011. V. 22. P. 1508
  11. Jimmenes-Iszal E., Moreno D., Mercero J.M. et al. // J. Phys. Chem. A. 2014. V. 118. P. 4309. https://doi.org/10.1021/jp501496b
  12. Zheng M.M., Li S.J., Su Y. et al. // J. Phys. Chem. C. 2013. V. 117. P. 25077. https://doi.org/10.1021/jp4072839
  13. Costanzo E., van Hemert M.C., Kroes G.-J. // Phys. Chem. C. 2014. V. 118. P. 513. https://doi.org/10.1021/jp410482x
  14. Smith J.C., Reber A.C., Khana S.N. et al. // J. Phys. Chem. A. 2014. V. 118. P. 8485. https://doi.org/10.1021/jp501934t
  15. Das S., Pal S., Krishnamurty S. // J. Phys. Chem. C. 2014. V. 118. P. 19869. https://doi.org/10.1021/jp505700a
  16. Mikhailin A.A., Charkin O.P., Klimenko N.M. // Russ. J. Inorg. Chem. 2013. V. 58. P. 1439. https://doi.org/10.1134/S0036023613120073
  17. Zhu B.-C., Zhang S., Zeng L. // Int. J. Quant. Chem. 2020. V. 120. P. 26143. https://doi.org/10.1002/qua.26143
  18. He C., Chen Y., Sheng Y. // Eur. Phys. J. D. 2019. V. 73. P. 90. https://doi.org/10.1140/epjd/e2019-90521-6
  19. Kumar A., Vyas N., Ojna A.K. // Int. J. Hydrogen Energy. 2020. V. 45. P. 12961. https://doi.org/10.1016/j.ijhydene.2020.03.018
  20. Zeng L., Liang M.-K., Wei X.-F. et al. // J. Phys. Condens. Matter. 2021. V. 33. P. 065302. https://doi.org/10.1088/1361-648X/abc401
  21. Mal’tsev A.P., Charkin O.P. // Russ. J. Inorg. Chem. 2021. V. 66. P. 1860. https://doi.org/10.1134/S0036023621120111
  22. Charkin O.P., Mal’tsev A.P. // J. Phys. Chem. A. 2021. V. 125. P. 2308. https://doi.org/10.1021/acs.jpca.1c00211
  23. Charkin O.P., Klimenmo N.M. // Russ. J. Inorg. Chem. 2018. V. 63. P. 1578. https://doi.org/10.1134/S0036023618120069
  24. Frisch M.J., Trucks G.W., Schlegel H.B. et al. GAUSSIAN-09, Revision A.02 (Gaussian, Inc., Wallingdorf CT, 2013).
  25. Becke A.D.J. // J. Chem. Phys. 1993. V. 98. P. 5648. https://doi.org/10.1063/1.464913
  26. Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1998. V. 37. P. 785. https://doi.org/10.1103/PhysRevB.37.785
  27. Zou Q., Akoda Y., Yamamoto K. et al. // Angew. Chem. Int. Ed. 2022. V. 61. P. e202209679. https://doi.org/10.1002/anie.202209675

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (671KB)
3.

Baixar (1MB)
4.

Baixar (1MB)

Declaração de direitos autorais © О.П. Чаркин, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies