Iron(III) Complexation with Barbituric and 2-Thiobarbituric Acids in Aqueous Solution

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Complexation in systems containing iron(III) chloride and barbituric (H2BA) or 2-thiobarbituric (H2TBA) acid has been studied by spectrophotometry and pH-metry in the pH range of 1.3–3.3 (I = 0.1 (NaCl), t = 20°C). The presence of 1 : 1 complexes with mono- and deprotonated forms of the ligand has been established, and their stability constants (in log units) have been determined: 1[FeHBA]2+ (3.49 ± 0.15), [FeHTBA]2+ (2.69 ± 0.07), [FeBA]+ (12.22 ± 0.13), and [FeTBA]+ (11.05 ± 0.08). It has been shown that the higher thermodynamic stability of barbiturate complexes compared to 2-thiobarbiturate ones is due to the greater basicity of the barbiturate anion. Based on the stability constants obtained, it has been proposed to use orthophosphate, fluoride, and ethylenediaminetetraacetate ions to eliminate the interfering effect of iron(III) in the determination of malondialdehyde by the thiobarbiturate method. Orthophosphoric acid is the most convenient for practical applications, as it makes it possible to mask iron(III) and to create a strongly acidic medium necessary for the formation of a colored malondialdehyde–H2TBA adduct.

Sobre autores

A. Lakeev

National Research Tomsk State University; Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences

Email: lakeevs@mail.ru
634050, Tomsk, Russia; 634028, Tomsk, Russia

N. Korotchenko

National Research Tomsk State University

Email: lakeevs@mail.ru
634050, Tomsk, Russia

I. Kurzina

National Research Tomsk State University

Autor responsável pela correspondência
Email: lakeevs@mail.ru
634050, Tomsk, Russia

Bibliografia

  1. Gao J., Zhou Q., Wu D. et al. // Clin. Chim. Acta. 2021. V. 513. P. 6. https://doi.org/10.1016/j.cca.2020.12.005
  2. Muckenthaler M.U., Rivella S., Hentze M.W. et al. // Cell. 2017. V. 168. № 3. P. 344. https://doi.org/10.1016/j.cell.2016.12.034
  3. Balla J., Jeney V., Varga Z. et al. // Acta Physiol. Hung. 2007. V. 94. № 1–2. P. 95. https://doi.org/10.1556/APhysiol.94.2007.1-2.9
  4. Пальцев М.А., Кукес В.Г., Фисенко В.П. Молекулярные механизмы взаимодействия лекарственных средств. М.: АстраФармСервис, 2004. 224 с.
  5. Mahmudov K.T., Kopylovich M.N., Maharramov A.M. et al. // Coord. Chem. Rev. 2014. V. 265. P. 1. https://doi.org/10.1016/j.ccr.2014.01.002
  6. Shafiq N., Arshad U., Zarren G. et al. // Curr. Org. Chem. 2020. V. 24. № 2. P. 129. https://doi.org/10.2174/1385272824666200110094457
  7. Головнев Н.Н., Молокеев М.С. 2-Тиобарбитуровая кислота и ее комплексы с металлами: синтез, структура и свойства. Красноярск: Сиб. федер. ун-т. 2014. 245 с.
  8. Lee J.-H., Lee S., Park M.Y. et al. // Virol. J. 2011. V. 8. Article 18. https://doi.org/10.1186/1743-422X-8-18
  9. Balas V.I., Verginadis I.I., Geromichalos G.D. et al. // Eur. J. Med. Chem. 2011. V. 46. № 7. P. 2835. https://doi.org/10.1016/j.ejmech.2011.04.005
  10. Lee S.Y., Slagle-Webb B., Sharma A.K. et al. // Anticancer Res. 2020. V. 40. № 11. P. 6039. https://doi.org/10.21873/anticanres.14625
  11. Suzuki O., Watanabe K. Drugs and poisons in humans. Heidelberg: Springer-Verlag. 2005. 672 p. https://doi.org/10.1007/3-540-27579-7
  12. Zeb A., Ullah F. // J. Anal. Methods Chem. 2016. V. 2016. Art. 1. https://doi.org/10.1155/2016/9412767
  13. Korotchenko N.M., Skorik N.A. // Russ. J. Inorg. Chem. 2000. V. 45. № 12. P. 2099. [Коротченко Н.М., Скорик Н.А. // Журн. неорган. химии. 2000. Т. 45. № 12. С. 2099.]
  14. Refat M.S., El-Korashy S.A., Ahmed A.S. // Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2008. V. 71. № 3. P. 1084. https://doi.org/10.1016/j.saa.2008.03.001
  15. Zaki Z.M., Mohamed G.G. // Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2000. V. 56A. № 7. P. 1245. https://doi.org/10.1016/S1386-1425(99)00225-5
  16. Lakeev A.P., Korotchenko N.M. // Russ. J. Inorg. Chem. 2020. V. 65. № 8. P. 1232. [Лакеев А.П., Коротченко Н.М. // Журн. неорган. химии. 2020. Т. 65. № 8. С. 1105.] https://doi.org/10.1134/S0036023620080082
  17. Глущенко Н.Н., Плетенева Т.В., Попков В.А. Фармацевтическая химия. М.: Академия, 2004. 384 с.
  18. Morelli B. // Analyst. 1983. V. 108. P. 870. https://doi.org/10.1039/AN9830800870
  19. Singh B.R., Jain R.K., Jain M.K. et al. // Thermochim. Acta. 1984. V. 78. № 1–3. P. 175. https://doi.org/10.1016/0040-6031(84)87144-0
  20. Wills E.D. // Biochim. Biophys. Acta. 1964. V. 84. № 4. P. 475. https://doi.org/10.1016/0926-6542(64)90016-2
  21. Zhou L., Sorenson J.R.J. // J. Inorg. Biochem. 1998. V. 72. № 3–4. P. 217. https://doi.org/10.1016/S0162-0134(98)10083-1
  22. Senthilkumar M., Amaresan N., Sankaranarayanan A. Plant-microbe interactions: Laboratory techniques. N.Y.: Springer Science + Business Media, 2021. 296 p. https://doi.org/10.1007/978-1-0716-1080-0
  23. Weitner T., Inić S., Jablan J. et al. // Croat. Chem. Acta. 2016. V. 89. № 1. P. 133. https://doi.org/10.5562/cca2902
  24. Muñoz A.H.S., Puga M.P., Wrobel K. et al. // Microchim. Acta. 2004. V. 148. № 3–4. P. 285. https://doi.org/10.1007/s00604-004-0276-5
  25. Шварценбах Г., Флашка Г. Комплексонометрическое титрование. М.: Химия, 1970. 360 с.
  26. Türkel N., Aksoy M.S. // Int. J. Anal. Chem. 2014. V. 2014. P. 1. https://doi.org/10.1155/2014/243175
  27. Костромина Н.А., Кумок В.Н., Скорик Н.А. Химия координационных соединений. М.: Высшая школа, 1990. 432 с.
  28. Скорик Н.А., Чернов Е.Б. Расчеты с использованием персональных компьютеров в курсе химии комплексных соединений. Томск: ТГУ, 2009. 92 с. https://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000398727 (23.08.2022)
  29. Киселев Ю.М., Добрынина Н.А. Химия координационных соединений. М.: Академия, 2007. 352 с.
  30. Костромина Н.А., Кумок В.Н., Скорик Н.А. Химия координационных соединений. М.: Высшая школа, 1990. 432 с.
  31. Кумок В.Н. Закономерности в устойчивости координационных соединений в растворах. Томск: ТГУ, 1977. 230 с.
  32. Sillén L.G., Martell A.E. Stability constants of metal-ion complexes. Pt. 3 (2). L.: Chemical Society, 1964. 865 p.
  33. Djurdjević P. // Transit. Met. Chem. 1990. V. 15. P. 345. https://doi.org/10.1007/BF01177459
  34. Djurdjević P., Jelić R. // Transit. Met. Chem. 1993. V. 18. P. 457. https://doi.org/10.1007/BF00136603
  35. Djurdjević P., Jelić R. // Transit. Met. Chem. 1997. V. 22. P. 284. https://doi.org/10.1023/A:1018476810838
  36. Field T.B., McCourt J.L., McBryde A.E. // Can. J. Chem. 1974. V. 52. № 17. P. 3119. https://doi.org/10.1139/v74-458
  37. Yavuz T., Pelit L. // Turk. J. Chem. 2020. V. 44. № 2. P. 435. https://doi.org/10.3906/kim-1909-10
  38. Yuchi A., Hotta H., Wada H. et al. // Bull. Chem. Soc. Jpn. 1987. V. 60. № 4. P. 1379. https://doi.org/10.1246/bcsj.60.1379
  39. Al-Sogair F., Marafie H.M., Shuaib N.M. et al. // J. Coord. Chem. 2002. V. 55. № 9. P. 1097. https://doi.org/10.1080/0095897021000010053

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (18KB)
3.

Baixar (535KB)
4.

Baixar (252KB)
5.

Baixar (82KB)
6.

Baixar (75KB)

Declaração de direitos autorais © А.П. Лакеев, Н.М. Коротченко, И.А. Курзина, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies