Supramolecular Hybrid Complexes Based on Octahedral Molybdenum(II) Iodide Cluster and Zinc(II) Porphyrin

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The possibility of the formation of supramolecular hybrids based on two photosensitizers, an octahedral molybdenum(II) iodide cluster with six terminal isonicotinate ligands (Bu4N)2[{Mo6I8}(OOC–C5H4N)6] (PyMoC, C) and A4-type zinc(II) porphyrin (ZnTPP, P), has been demonstrated. Spectrophotometric and NMR titration methods have shown that the formation of CPn complexes (n = 1–6) occurs in solutions of noncoordinating chlorinated solvents due to the formation of metal–N-ligand coordination bonds between the components. The use of an octahedral cluster as a hexatopic N-ligand and the lability of the Zn···NPy bonds together lead to the formation of a series of CPn complexes (n = 1–6), which are in dynamic equilibrium in solution. Nevertheless, conditions have been selected to isolate single crystals of individual forms CP4 + 2 and CP6 + 2, and their structures have been determined by X-ray diffraction analysis. The PyMoC cluster turns out to coordinate four or six ZnTPP molecules, respectively, while both structures contain two “extramolecules” of zinc(II) porphyrin bound to the cluster via hydrogen bonds involving the oxygen atoms of the isonicotinate groups and protons of water axially coordinated to the porphyrin metal center.

Авторлар туралы

M. Volostnykh

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: marinavolostnykh@gmail.com
119071, Moscow, Russia

P. Loboda

Department of Fundamental Physical and Chemical Engineering, Moscow State University

Email: marinavolostnykh@gmail.com
119234, Moscow, Russia

A. Sinelshchikova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: marinavolostnykh@gmail.com
119071, Moscow, Russia

P. Dorovatovskii

National Research Centre Kurchatov Institute

Email: marinavolostnykh@gmail.com
123182, Moscow, Russia

G. Kirakosyan

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences; Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: marinavolostnykh@gmail.com
119071, Moscow, Russia; 119991, Moscow, Russia

M. Mikhaylov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: marinavolostnykh@gmail.com
630090, Novosibirsk, Russia

M. Sokolov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: marinavolostnykh@gmail.com
630090, Novosibirsk, Russia

Yu. Gorbunova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences; Department of Fundamental Physical and Chemical Engineering, Moscow State University; Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: marinavolostnykh@gmail.com
119071, Moscow, Russia; 119234, Moscow, Russia; 119991, Moscow, Russia

Әдебиет тізімі

  1. Scandola F., Chiorboli C., Prodi A. et al. // Coord. Chem. Rev. 2006. V. 250. № 11–12. P. 1471. https://doi.org/10.1016/j.ccr.2006.01.019
  2. La D.D., Ngo H.H., Nguyen D.D. et al. // Coord. Chem. Rev. 2022. V. 463. P. 214543. https://doi.org/10.1016/j.ccr.2022.214543
  3. Pöthig A., Casini A. // Theranostics. 2019. V. 9. № 11. P. 3150. https://doi.org/10.7150/thno.31828
  4. Baroncini M., Canton M., Casimiro L. et al. // Eur. J. Inorg. Chem. 2018. V. 2018. № 42. P. 4589. https://doi.org/10.1002/ejic.201800923
  5. Antipin I.S., Alfimov M.V., Arslanov V.V. et al. // Russ. Chem. Rev. 2021. V. 90. № 8. P. 895. https://doi.org/10.1070/RCR5011
  6. Агафонов М.А., Александров Е.В., Артюхова Н.А. и др. // Журн. структур. химии. 2022. Т. 63. № 5. С. 535. https://doi.org/10.26902/JSC_id93211
  7. Drain C.M., Hupp J.T., Suslick K.S. et al. // J. Porphyr. Phthalocyanines. 2002. V. 6. № 4. P. 243. https://doi.org/10.1142/S1088424602000282
  8. Cook L.P., Brewer G., Wong-Ng W. // Crystals. 2017. V. 7. № 7. P. 223. https://doi.org/10.3390/cryst7070223
  9. Takagi S., Eguchi M., Tryk D. et al. // J. Photochem. Photobiol., C: Photochem. Rev. 2006. V. 7. № 2–3. P. 104. https://doi.org/10.1016/j.jphotochemrev.2006.04.002
  10. Koifman O.I., Ageeva T.A., Beletskaya I.P. et al. // Macroheterocycles. 2020. V. 13. № 4. P. 311. https://doi.org/10.6060/mhc200814k
  11. Yu J., Zhu S., Pang L. et al. // J. Chromatogr. A. 2018. V. 1540. P. 1. https://doi.org/10.1016/j.chroma.2018.02.006
  12. Neamţu M., Nădejde C., Hodoroaba V.D. et al. // Appl. Catal., B: Environ. 2018. V. 232. № 2010. P. 553. https://doi.org/10.1016/j.apcatb.2018.03.079
  13. D’Souza F., Ito O. // Coord. Chem. Rev. 2005. V. 249. № 13–14. P. 1410. https://doi.org/10.1016/j.ccr.2005.01.002
  14. Menilli L., Monteiro A.R., Lazzarotto S. et al. // Pharmaceutics. 2021. V. 13. № 9. P. 1512. https://doi.org/10.3390/pharmaceutics13091512
  15. Ksenofontov A.A., Bichan N.G., Khodov I.A. et al. // J. Mol. Liq. 2018. V. 269. P. 327. https://doi.org/10.1016/j.molliq.2018.08.069
  16. Ksenofontov A.A., Lukanov M.M., Bichan N.G. et al. // Dye. Pigment. 2021. V. 185. № A. P. 108918. https://doi.org/10.1016/j.dyepig.2020.108918
  17. Hu R., Zhai X., Ding Y. et al. // Chinese Chem. Lett. 2022. V. 33. № 5. P. 2715. https://doi.org/10.1016/j.cclet.2021.08.110
  18. Zenkevich E., Blaudeck T., Sheinin V. et al. // J. Mol. Struct. 2021. V. 1244. P. 131239. https://doi.org/10.1016/j.molstruc.2021.131239
  19. Mandal H., Chakali M., Venkatesan M. et al. // J. Phys. Chem. C. 2021. V. 125. № 8. P. 4750. https://doi.org/10.1021/acs.jpcc.0c08229
  20. Zhou Y., Lu Q., Liu Q. et al. // Adv. Funct. Mater. 2022. V. 32. № 15. P. 2112159. https://doi.org/10.1002/adfm.202112159
  21. Lamare R., Ruppert R., Boudon C. et al. // Chem. A. Eur. J. 2021. V. 27. № 65. P. 16071. https://doi.org/10.1002/chem.202102277
  22. Yang Y., Tao F., Zhang L. et al. // Chinese Chem. Lett. 2022. V. 33. № 5. P. 2625. https://doi.org/10.1016/j.cclet.2021.09.093
  23. Wang C., Cai M., Liu Y. et al. // J. Colloid Interface Sci. 2022. V. 605. P. 727. https://doi.org/10.1016/j.jcis.2021.07.137
  24. Yao B.-J., Zhang X.-M., Li F. et al. // ACS Appl. Nano Mater. 2020. V. 3. № 10. P. 10360. https://doi.org/10.1021/acsanm.0c02276
  25. Hajian R., Bahrami E. // Catal. Letters. 2022. V. 152. № 8. P. 2445. https://doi.org/10.1007/s10562-021-03827-x
  26. Zhu Y., Huang Y., Li Q. et al. // Inorg. Chem. 2020. V. 59. № 4. P. 2575. https://doi.org/10.1021/acs.inorgchem.9b03540
  27. Shehzad F.K., Zhou Y., Zhang L. et al. // J. Phys. Chem. C. 2018. V. 122. № 2. P. 1280. https://doi.org/10.1021/acs.jpcc.7b11244
  28. Xu J., Xue L.-J., Hou J.-L. et al. // Inorg. Chem. 2017. V. 56. № 14. P. 8036. https://doi.org/10.1021/acs.inorgchem.7b00775
  29. Allain C., Favette S., Chamoreau L. et al. // Eur. J. Inorg. Chem. 2008. V. 2008. № 22. P. 3433. https://doi.org/10.1002/ejic.200701331
  30. Chandra B.K.C., D’Souza F. // Coord. Chem. Rev. 2016. V. 322. P. 104. https://doi.org/10.1016/j.ccr.2016.05.012
  31. Volostnykh M.V., Mikhaylov M.A., Sinelshchikova A.A. et al. // Dalton Trans. 2019. V. 48. № 5. P. 1835. https://doi.org/10.1039/c8dt04452j
  32. Mikhailov M.A., Brylev K.A., Abramov P.A. et al. // Inorg. Chem. 2016. V. 55. № 17. P. 8437. https://doi.org/10.1021/acs.inorgchem.6b01042
  33. Fujii S., Tanioka E., Sasaki K. et al. // Eur. J. Inorg. Chem. 2020. V. 2020. № 31. P. 2983. https://doi.org/10.1002/ejic.202000440
  34. Puche M., García-Aboal R., Mikhaylov M.A. et al. // Nanomaterials. 2020. V. 10. № 7. P. 1. https://doi.org/10.3390/nano10071259
  35. López-López N., Muñoz Resta I., De Llanos R. et al. // ACS Biomater. Sci. Eng. 2020. V. 6. № 12. P. 6995. https://doi.org/10.1021/acsbiomaterials.0c00992
  36. Mikhaylov M.A., Berezin A.S., Sukhikh T.S. et al. // J. Struct. Chem. 2022. V. 63. № 12. P. 2101. https://doi.org/10.1134/S0022476622120216
  37. Mikhailov M.A., Berezin A.S., Sukhikh T.S. et al. // J. Struct. Chem. 2021. V. 62. № 12. P. 1896. https://doi.org/10.1134/S002247662112009X
  38. Mikhailov M.A., Brylev K.A., Virovets A.V. et al. // New J. Chem. 2016. V. 40. № 2. P. 1162. https://doi.org/10.1039/C5NJ02246K
  39. Fabrizi de Biani F., Grigiotti E., Laschi F. et al. // Inorg. Chem. 2008. V. 47. № 12. P. 5425. https://doi.org/10.1021/ic7018428
  40. Satake A., Kobuke Y. // Tetrahedron. 2005. V. 61. № 1. P. 13. https://doi.org/10.1016/j.tet.2004.10.073
  41. Chichak K., Walsh M.C., Branda N.R. // Chem. Commun. 2000. № 10. P. 847. https://doi.org/10.1039/b001259i
  42. Gorbunova Y.G., Enakieva Y.Y., Sakharov S.G. et al. // J. Porphyr. Phthalocyanines. 2003. V. 7. № 12. P. 795. https://doi.org/10.1142/S1088424603000987
  43. Volostnykh M.V., Kirakosyan G.A., Sinelshchikova A.A. et al. // Dalton Trans. 2023. V. 52. № 16. P. 5354. https://doi.org/10.1039/D3DT00251A
  44. Armarego W.L.F., Chai C.L.L. // Purification of Organic Chemicals, in: Purif. Lab. Chem. Elsevier, 2009. P. 88. https://doi.org/10.1016/B978-1-85617-567-8.50012-3
  45. Kieboom A.P.G. // Recl. des Trav. Chim. des Pays-Bas. 2010. V. 107. № 12. P. 685. https://doi.org/10.1002/recl.19881071209
  46. Lindsey J.S., Schreiman I.C., Hsu H.C. et al. // J. Org. Chem. 1987. V. 52. № 5. P. 827. https://doi.org/10.1021/jo00381a022
  47. Renny J.S., Tomasevich L.L., Tallmadge E.H. et al. // Angew. Chem. Int. Ed. 2013. V. 52. № 46. P. 11998. https://doi.org/10.1002/anie.201304157
  48. Lazarenko V., Dorovatovskii P., Zubavichus Y. et al. // Crystals. 2017. V. 7. № 11. P. 325. https://doi.org/10.3390/cryst7110325
  49. Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Cryst. Res. Technol. 2020. V. 55. № 5. P. 1. https://doi.org/10.1002/crat.201900184
  50. Kabsch W. // Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010. V. 66. № 2. P. 125. https://doi.org/10.1107/S0907444909047337
  51. Evans P. // Acta Crystallogr., Sect. D: Biol. Crystallogr. 2006. V. 62. № 1. P. 72. https://doi.org/10.1107/S0907444905036693
  52. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/S0021889808042726
  53. Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Adv. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
  54. Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  55. Wang F., Xu L., Nawaz M.H. et al. // RSC Adv. 2014. V. 4. № 106. P. 61378. https://doi.org/10.1039/C4RA10087E
  56. Iwamoto H., Hori K., Fukazawa Y. // Tetrahedron Lett. 2005. V. 46. № 5. P. 731. https://doi.org/10.1016/j.tetlet.2004.12.028
  57. Harada K., Nguyen T.K.N., Grasset F. et al. // NPG Asia Mater. 2022. V. 14. № 1. P. 21. https://doi.org/10.1038/s41427-022-00366-8
  58. Mikhaylov M.A., Abramov P.A., Komarov V.Y. et al. // Polyhedron. 2017. V. 122. P. 241. https://doi.org/10.1016/j.poly.2016.11.011
  59. Vorotnikov Y.A., Efremova O.A., Novozhilov I.N. et al. // J. Mol. Struct. 2017. V. 1134. № 2017. P. 237. https://doi.org/10.1016/j.molstruc.2016.12.052
  60. Tat F.T., Zhou Z., MacMahon S. et al. // J. Org. Chem. 2004. V. 69. № 14. P. 4602. https://doi.org/10.1021/jo049671w

Қосымша файлдар


© М.В. Волостных, П.А. Лобода, А.А. Синельщикова, П.В. Дороватовский, Г.А. Киракосян, М.А. Михайлов, М.Н. Соколов, Ю.Г. Горбунова, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>