New Method for Preparation of Composite Based on Montmorillonite and Graphene Oxide

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A new method for preparation of a composite based on graphene oxide and montmorillonite has been proposed. A comparative characteristic of the adsorption rate for montmorillonite, graphene oxide, and a composite based on them is given. It is shown that the composite has the best adsorption properties with respect to methylene blue. The samples have been studied by IR and Raman spectroscopies, SEM, X-ray powder diffraction, and TGA/DTA. The resulting composite material can be widely used as sorbents for organic dyes in an aqueous medium and organic solvents.

Негізгі сөздер

Авторлар туралы

Yu. Ioni

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: Acidladj@mail.ru
119991, Moscow, Russia

I. Sapkov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; Moscow State University

Email: Acidladj@mail.ru
119991, Moscow, Russia; 119991, Moscow, Russia

S. Chentsov

Lebedev Physical Institute, Russian Academy of Sciences

Email: Acidladj@mail.ru
119991, Moscow, Russia

E. Efremova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University; Moscow Aviation Institute (National Research University)

Email: Acidladj@mail.ru
119991, Moscow, Russia; 119571, Moscow, Russia; 125993, Moscow, Russia

S. Gubin

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: Acidladj@mail.ru
119991, Moscow, Russia

Әдебиет тізімі

  1. Luo P., Liu W., Zhu D. et al. // Colloids Surf., A: Physicochem. Eng. Asp. 2022. V. 655. № 130216. https://doi.org/10.1016/j.colsurfa.2022.130216
  2. Alkenani A., Saleh T.A. // J. Mol. Liq. 2022. V. 367. № 120291. https://doi.org/10.1016/j.molliq.2022.120291
  3. Mustafa B., Mehmood T., Wang Z. et al. // Chemosphere. 2022. V. 308. № 136333. https://doi.org/10.1016/j.chemosphere.2022.136333
  4. Lakshmy K.S., Lal D., Nair A. et al. // Polymers. 2022. V. 14. № 1604. https://doi.org/10.3390/polym14081604
  5. Panasyuk G.P., Kozerozhets I.V., Semenov E.A. et al. // Inorg. Mater. 2022. V. 55. № 9. P. 929. https://doi.org/10.1134/S0020168519090139
  6. Tarasova A.N. // J. Int. Pharm. Res. 2020. V. 12. P. 1169. https://doi.org/10.31838/ijpr/2020.SP2.142
  7. Makisha N. // Membranes. 2022. V. 12. № 9. P. 819. https://doi.org/10.3390/membranes12090819
  8. Kiselev A., Magaril E., Panepinto D. et al. // Sustainability. 2022. V. 13. № 12885. https://doi.org/10.3390/su132212885
  9. Ali M.E.A., Shahat A., Ayoub T.I. et al. // Biointerface Res. Appl. Chem. 2022. V. 12. № 6. P. 7556. https://doi.org/10.33263/BRIAC126.75567572
  10. Butusova O.A. // J. Int. Pharm. Res. 2020. V. 12. P. 1156. https://doi.org/10.31838/ijpr/2020.SP2.140
  11. Raj S., Singh H., Bhattacharya J. // Sci. Total Environ. 2023. V. 857. № 159464. https://doi.org/10.1016/j.scitotenv.2022.159464
  12. Chow M.K., Jee C.E., Yeap S.P. // Results in Engineering. 2022. V. 16. № 100682. https://doi.org/10.1016/j.rineng.2022.100682
  13. Bulychev N.A. // Nanosci. Technol. 2021. V. 12. № 3. P. 91. https://doi.org/10.1615/NanoSciTechnolIntJ.2021038033
  14. Memetova A., Tyagi I., Singh P. et al. // J. Clean. Prod. 2022. V. 379. № 134770. https://doi.org/10.1016/j.jclepro.2022.134770
  15. Liu R., Gao S., Peng Q. et al. // Fuel. 2022. V. 330. № 125567. https://doi.org/10.1016/j.fuel.2022.125567
  16. Jahan N., Roy H., Reaz A.H. et al. // J. Environ. Chem. Eng. 2022. V. 6. № 100239. https://doi.org/10.1016/j.cscee.2022.100239
  17. Kozerozhets I., Panasyuk G., Semenov A. et al. // Powder Technol. 2023. V. 413. № 118030. https://doi.org/10.1016/j.powtec.2022.118030
  18. Panasyuk G.P., Kozerozhets I.V., Semenov E.A. et al. // Inorg. Mater. 2019. V. 55. № 9. P. 920. https://doi.org/10.1134/S0020168519090127
  19. Senkina E.I., Buyakov A.S., Kazantsev S.O. et al. // Coatings. 2022. V. 12. № 1107. https://doi.org/10.3390/coatings12081107
  20. Bakina O.V., Glazkova E.A., Lozhkomoev A.S. et al. // Cellulose. 2018. V. 25. № 8. P. 4487. https://doi.org/10.1007/s10570-018-1895-z
  21. Zhang A., Liu J., Yang Y. et al. // Chem. Eng. J. 2023. V. 451. P. 138762. https://doi.org/10.1016/j.cej.2022.138762
  22. Nkwoada A., Oyedika G., Oguzie E. et al. // Inorg. Chem. Commun. 2022. V. 143. P. 109768. https://doi.org/10.1016/j.inoche.2022.109768
  23. Yang H., Li M., Pan L. et al. // Environ. Res. 2023. V. 216. № 114423. https://doi.org/10.1016/j.envres.2022.114423
  24. Akpotu S.O., Diagboya P.N., Lawal I.A. et al. // Chem. Eng. J. 2023. V. 216. № 114423. https://doi.org/10.1016/j.cej.2022.139771
  25. Nehra S., Dhillon A., Sharma R. et al. // Environ. Nanotechnol. Monit. Manag. 2022. V. 18. № 100690. https://doi.org/10.1016/j.enmm.2022.100690
  26. Song J., Zhang S., Li G. et al // J. Hazard. Mater. 2020. V. 391. https://doi.org/10.1016/j.jhazmat.2019.121692
  27. Molla A., Li Y., Mandal B. et al. // Appl. Surf. Sci. 2019. V. 464. P. 170. https://doi.org/10.1016/j.carbon.2019.10.003
  28. Reynosa-Martínez A.C., Tovar G.N., Gallegos W.R. et al. // J. Hazard. Mater. 2020. V. 384. https://doi.org/10.1016/j.jhazmat.2019.121440
  29. Ioni Y.V., Chentsov S.I., Sapkov I.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1711. https://doi.org/10.1134/S0036023622601076
  30. Hummers W.S., Offeman R.E. // J. Am. Chem. Soc. 1958. V. 80. P. 6. https://doi.org/10.1021/ja01539a017
  31. Zhang X., Yi H., Bai H. et al. // RSC Advances. 2017. V. 7. № 66. P. 41471. https://doi.org/10.1039/c7ra07816a
  32. Ioni Y.V., Groshkova Y.A., Gubin S.P. et al. // Nanotechnol. Russ. 2020. V. 15. P. 163. https://doi.org/10.1134/S1995078020020111
  33. Yang Z., Yuan Z., Shang Z. et al. // Appl. Clay Sci. 2020. V. 197. P. 105781. https://doi.org/10.1016/j.clay.2020.105781
  34. Kozerozhets I., Panasyuk G., Semenov E. et al. // Ceram. Int. 2022. V. 48. № 6. P. 7522. https://doi.org/10.1016/j.ceramint.2021.11.296
  35. Kozerozhets I., Panasyuk G., Semenov E. et al. // Ceram. Int. 2020. V. 46. № 18. P. 28961. https://doi.org/10.1016/j.ceramint.2020.08.067
  36. Kozerozhets I.V., Panasyuk G.P., Semenov E.A. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 9. P. 1384. https://doi.org/10.1134/S0036023620090090
  37. Block K.A., Trusiak A., Katz A. et al. // Appl. Clay Sci. 2015. V. 107. P. 173. https://doi.org/10.1016/j.clay.2015.01.021
  38. Ioni Y.V., Groshkova Y.A., Buslaeva E.Y. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 6. P. 950. https://doi.org/10.1134/S0036023621060115
  39. Yang S., Chen Q., Shi M. et al. // Nanomaterials. 2020. V. 10. № 4. P. 770. https://doi.org/10.3390/nano10040770
  40. Danková Z., Mockovčiaková A., Dolinská S. // Desalination Water Treat. 2014. V. 52. P. 28. https://doi.org/10.1080/19443994.2013.814006
  41. Kuzenkova A.S., Romanchuk A.Y., Trigub A.L. et al. // Carbon. 2019. https://doi.org/10.1016/j.carbon.2019.10.003
  42. Yan H., Tao X., Yang Z. et al. // J. Hazard. Mater. 2014. V. 268. P. 191. https://doi.org/10.1016/j.jhazmat.2014.01.015

Қосымша файлдар


© Ю.В. Иони, И.В. Сапков, С.И. Ченцов, Е.И. Ефремова, С.П. Губин, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>