Catalytic Oxidation of CO over LaNi1/3Sb5/3O6 Synthesized by Different Methods

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Methods for the synthesis of LaNi1/3Sb5/3O6 with a rosiaite structure have been developed using citrate method and coprecipitation followed by annealing. The influence of synthesis conditions on the morphology of the samples has been demonstrated. A comparative analysis of the catalytic properties of LaNi1/3Sb5/3O6 synthesized by various methods, in the reaction of CO oxidation has been carried out. The catalyst synthesized by the citrate method demonstrated the greatest efficiency and stability (the temperature of 90% CO conversion was T90 = 336°C). The LaNi1/3Sb5/3O6 surface was studied before and after catalysis by in situ diffuse reflectance IR spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed O2 desorption. It has been shown that the catalytic oxidation of CO on the LaNi1/3Sb5/3O6 surface proceeds according to the Mars–van Krevelen mechanism and is accompanied by redox Sb3+ ↔ Sb5+ processes. It has been established that no contamination of the sample surface occurs during the catalysis process.

About the authors

A. V. Egorysheva

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: anna_egorysheva@rambler.ru
119991, Moscow, Russia

S. V. Golodukhina

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: anna_egorysheva@rambler.ru
119991, Moscow, Russia

K. R. Plukchi

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: anna_egorysheva@rambler.ru
119991, Moscow, Russia

E. Yu. Liberman

Mendeleev University of Chemical Technology of Russia

Email: anna_egorysheva@rambler.ru
125047, Moscow, Russia

O. G. Ellert

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: anna_egorysheva@rambler.ru
119991, Moscow, Russia

A. V. Naumkin

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: anna_egorysheva@rambler.ru
119334, Moscow, Russia

A. V. Chistyakov

Topchiev Institute of Pertochemical Synthesis, Russian Academy of Sciences

Email: anna_egorysheva@rambler.ru
119991, Moscow, Russia

I. V. Kolesnik

Faculty of Materials Science, Moscow State University

Email: anna_egorysheva@rambler.ru
119991, Moscow, Russia

O. V. Arapova

Topchiev Institute of Pertochemical Synthesis, Russian Academy of Sciences

Author for correspondence.
Email: anna_egorysheva@rambler.ru
119991, Moscow, Russia

References

  1. Seiyama T. // Catal. Rev. 1992. V. 34. P. 281. https://doi.org/10.1080/01614949208016313
  2. Eyssler A. Mandaliev P., Winkler A. et al. // J. Phys. Chem. C. 2010. V. 114. P. 4584. https://doi.org/10.1021/jp911052s
  3. Tao F.F., Shan Jj., Nguyen L. et al. // Nat. Commun. 2015. V. 6. P. 7798. https://doi.org/10.1038/ncomms8798
  4. Chang H., Bjørgum E., Mihai O., et al. // ACS Catal. 2020. V. 10. P. 3707. https://doi.org/10.1021/acscatal.9b05154
  5. Zhang X., House S.D., Tang Y. et al. // ACS Sustain. Chem. Eng. 2018. V. 6. P. 6467. https://doi.org/10.1021/acssuschemeng.8b00234
  6. Wang D., Xu R., Wang X., Li Y. // Nanotechnology. 2006. V. 17. P. 979. https://doi.org/10.1088/0957-4484/17/4/023
  7. Royer S., Duprez D. // ChemCatChem. 2011. V. 3. P. 24. https://doi.org/10.1002/cctc.201000378
  8. Zhu J., Gao Q. // Micropor. Mesopor. Mater. 2009. V. 124. P. 144. https://doi.org/10.1016/j.micromeso.2009.05.003
  9. Mahammadunnisa Sk., Manoj Kumar Reddy P., Lingaiah N., Subrahmanyam Ch. // Catal. Sci. Technol. 2013. V. 3. P. 730. https://doi.org/10.1039/C2CY20641B
  10. Chen J., Zou X., Rui Z., Ji H. // Energy Technol. 2020. V. 8. P. 1900641. https://doi.org/10.1002/ente.201900641
  11. Egorysheva A.V., Ellert O.G., Liberman E.Yu. et al. // J. Alloys Compd. 2019. V. 777. P. 655. https://doi.org/10.1016/j.jallcom.2018.11.008
  12. Liberman E.Yu., Ellert O.G., Naumkin A.V. et al. // Russ. J. Inorg. Chem. 2020. V. 65. P. 592. https://doi.org/10.1134/S0036023620040117
  13. Egorysheva A.V., Ellert O.G., Liberman E.Yu. et al. // Russ. J. Inorg. Chem. 2022. V. 67. P. 2127. https://doi.org/10.1134/S0036023622601349
  14. Ellert O.G., Egorysheva A.V., Golodukhina S.V. et al. // Russ. Chem. Bull. 2021. V. 70. P. 2397. https://doi.org/10.1007/s11172-021-3359-0
  15. Birchall T., Connor J.A., Hillier L.H. // J. Chem. Soc. Dalton Trans. 1975. V. 20. P. 2003. https://doi.org/10.1039/dt9750002003
  16. Carlson T.A. Auger electron spectroscopy // Photoelectron Auger Spectroscopy. Boston: Springer US, 1975. P. 279. https://doi.org/10.1007/978-1-4757-0118-0_6
  17. Garbassi F. // Surf. Interface Anal. 1980. V. 2. P. 165. https://doi.org/10.1002/sia.740020502
  18. Teterin Yu.A., Teterin A.Yu., Utkin I.O., Ryzhkov M.V. // J. Electron Spectros. Relat. Phenomena. 2004. V. 137–140. P. 601. https://doi.org/10.1016/j.elspec.2004.02.014
  19. Little L.H. Infrared Spectra of Adsorbed Species. London: Academic Press, 1966. 428 p.
  20. Yamazoe N., Fuchigami J., Kishikawa M., Seiyama T. // Surf. Sci. 1979. V. 86. P. 335. https://doi.org/10.1016/0039-6028(79)90411-4

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (104KB)
4.

Download (2MB)
5.

Download (171KB)
6.

Download (102KB)
7.

Download (224KB)
8.

Download (95KB)
9.

Download (169KB)
10.

Download (232KB)
11.

Download (74KB)
12.

Download (54KB)

Copyright (c) 2023 А.В. Егорышева, С.В. Голодухина, К.Р. Плукчи, Е.Ю. Либерман, О.Г. Эллерт, А.В. Наумкин, А.В. Чистяков, И.В. Колесник, О.В. Арапова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies