Sorption of Radionuclides on Amorphous and Crystalline Cerium(IV) Phosphates

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The sorption properties of amorphous cerium(IV) hydrogen phosphate and crystalline phases NH4Ce2(PO4)3, (NH4)2Ce(PO4)2·H2O, and Ce(OH)PO4 towards the 243Am(III), 232Th(IV), 237Np(V), and 233, 238U(VI) radionuclides were studied in aqueous media at pH 1, 4, 7, and 10 for 24 h. The highest degree of sorption (up to 100%) was found for amorphous cerium(IV) hydrogen phosphate. The pH dependences of radionuclide sorption for crystalline compounds were shown to be similar to one another: the highest sorption was observed at pH 7 (up to 100% for 243Am(III)), while the lowest values were observed for pH 10 and 1. An exception was provided by 237Np(V), the sorption of which was close to zero in the pH range of 1–7 and reached 60% at pH 10. Keeping amorphous and crystalline cerium(IV) phosphates in acid medium leads to quantitative desorption of all of the tested radionuclides within the first 5 h.

About the authors

T. O. Kozlova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: taisia.shekunova@yandex.ru
119991, Moscow, Russia

E. Yu. Khvorostinin

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: taisia.shekunova@yandex.ru
119991, Moscow, Russia

A. A. Rodionova

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: taisia.shekunova@yandex.ru
119991, Moscow, Russia

D. N. Vasilyeva

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; National Research University Higher School of Economics

Email: taisia.shekunova@yandex.ru
119991, Moscow, Russia; 101000, Moscow, Russia

A. E. Baranchikov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: taisia.shekunova@yandex.ru
119991, Moscow, Russia

V. K. Ivanov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: taisia.shekunova@yandex.ru
119991, Moscow, Russia

References

  1. Chakraborty A., Pal A., Saha B.B. // Materials (Basel). 2022. V. 15. № 24. P. 8818. https://doi.org/10.3390/ma15248818
  2. Yu S., Wang X., Tan X. et al. // Inorg. Chem. Front. 2015. V. 2. № 7. P. 593. https://doi.org/10.1039/C4QI00221K
  3. Корнейков Р.И., Иваненко В.И., Аксенова С.В. // Неорган. материалы. 2022. Т. 58. № 2. С. 150. https://doi.org/10.31857/S0002337X22020075
  4. Ярусова С.Б., Гордиенко П.С., Шичалин О.О. и др. // Журн. неорган. химии. 2022. V. 67. № 9. P. 1251. https://doi.org/10.31857/S0044457X22090197
  5. Hyatt O. // Materials (Basel). 2019. V. 12. № 21. P. 3611. https://doi.org/10.3390/ma12213611
  6. Neumeier S., Arinicheva Y., Ji Y. et al. // Radiochim. Acta. 2017. V. 105. № 11. P. 961. https://doi.org/10.1515/ract-2017-2819
  7. Locock A.J. // Crystal Chemistry of Actinide Phosphates and ArsenatesStruct. Chem. Inorg. Actin. Compd / Eds. Krivovichev S.V., Burns P.C., Tananaev I.G. Amsterdam: Elsevier, 2007. P. 217.
  8. Orlova A.I., Ojovan M.I. // Materials (Basel). 2019. V. 12. № 16. P. 2638. https://doi.org/10.3390/ma12162638
  9. Drot R., Lindecker C., Fourest B. et al. // New J. Chem. 1998. V. 22. № 10. P. 1105. https://doi.org/10.1039/a803215g
  10. Wang J., Wei Y., Wang J. et al. // Ceram. Int. 2022. V. 48. № 9. P. 12772. https://doi.org/10.1016/j.ceramint.2022.01.147
  11. Bregiroux D., Popa K., Wallez G. // J. Solid State Chem. 2015. V. 230. P. 26. https://doi.org/10.1016/j.jssc.2015.06.010
  12. Dacheux N., Clavier N., Robisson A.C. et al. // Comptes Rendus Chim. 2004. V. 7. № 12. P. 1141. https://doi.org/10.1016/j.crci.2004.02.019
  13. Hayashi H., Ebina T., Onodera Y. et al. // Bull. Chem. Soc. Jpn. 1997. V. 70. № 7. P. 1701. https://doi.org/10.1246/bcsj.70.1701
  14. Романчук А.Ю., Шекунова Т.О., Петров В.Г. и др. // Радиохимия. 2018. Т. 60. № 6. С. 525. https://doi.org/10.1134/s0134347518060086
  15. Metwally S.S., El-Gammal B., Aly H.F. et al. // Sep. Sci. Technol. 2011. V. 46. № 11. P. 1808. https://doi.org/10.1080/01496395.2011.572328
  16. El-Gammal B., Metwally S.S., Aly H.F. et al. // Desalin. Water Treat. 2012. V. 46. № 1–3. P. 124. https://doi.org/10.1080/19443994.2012.677412
  17. Bevara S., Achary S.N., Patwe S.J. et al. // AIP Conf. Proc. 2016. V. 1731. P. 1. https://doi.org/10.1063/1.4948206
  18. Романчук А.Ю., Шекунова Т.О., Ларина А.И. и др. // Радиохимия. 2019. Т. 61. № 6. С. 512. https://doi.org/10.1134/s00338311190600121
  19. Salvadó M.A., Pertierra P., Bortun A.I. et al. // Inorg. Chem. 2008. V. 47. № 16. P. 7207. https://doi.org/10.1021/ic800818c
  20. Brandel V., Dacheux N. // J. Solid State Chem. 2004. V. 177. № 12. P. 4755. https://doi.org/10.1016/j.jssc.2004.08.008
  21. Dacheux N., Clavier N., Wallez G. et al. // Solid State Sci. 2007. V. 9. № 7. P. 619. https://doi.org/10.1016/j.solidstatesciences.2007.04.015
  22. Yorov K.E., Shekunova T., Baranchikov et al. // J. Sol-Gel Sci. Technol. 2018. V. 85. № 3. P. 574. https://doi.org/10.1007/s10971-018-4584-3
  23. Shekunova T.O., Baranchikov A.E., Ivanova O.S. et al. // J. Non. Cryst. Solids. 2016. V. 447. P. 183. https://doi.org/10.1016/j.jnoncrysol.2016.06.012
  24. Иванов В.К., Полежаева О.С., Баранчиков А.Е. и др. // Неорган. материалы. 2010. Т. 46. № 1. С. 49. https://doi.org/10.1134/S0020168510010103
  25. Shekunova T.O., Istomin S.Y., Mironov A. V. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. № 27. P. 3242. https://doi.org/10.1002/ejic.201801182
  26. Kozlova T.O., Mironov A.V., Istomin S.Y. et al. // Chem. A Eur. J. 2020. V. 26. № 53. P. 12188. https://doi.org/10.1002/chem.202002527
  27. Саввин С.Б. Арсеназо III. Методы фотометрического определения редких и актинидных элементов. М.: Атомиздат, 1966. 256 с.
  28. Shakshooki S.K., El-Akari F.A., El-Fituri S.M. et al. // Adv. Mater. Res. 2014. V. 856. P. 3. https://doi.org/10.4028/www.scientific.net/AMR.856.3
  29. Somya A., Rafiquee M.Z.A., Varshney K.G. // Colloids Surf., A: Physicochem. Eng. Asp. 2009. V. 336. № 1–3. P. 142. https://doi.org/10.1016/j.colsurfa.2008.11.036
  30. El-Azony K.M., Ismail Aydia M., El-Mohty A.A. // J. Radioanal. Nucl. Chem. 2011. V. 289. № 2. P. 381. https://doi.org/10.1007/s10967-011-1079-x
  31. Hayashi H., Torii K., Nakata S.I. // J. Mater. Chem. 1997. V. 7. № 3. P. 557. https://doi.org/10.1039/a606397g
  32. Ishii K., Kimura Y., Yamazaki T. et al. // RSC Adv. 2017. V. 7. № 57. P. 35711. https://doi.org/10.1039/c7ra06850f
  33. Salvado M.A., Pertierra P., Trobajo C. et al. // J. Am. Chem. Soc. 2007. V. 129. № 36. P. 10970. https://doi.org/10.1021/ja0710297
  34. Тронев И.В., Шейченко Е.Д., Разворотнева Л.С. и др. // Журн. неорган. химии. 2023. Т. 68. № 3. С. 318. https://doi.org/10.31857/S0044457X22601869
  35. Thakur P., Moore R.C., Choppin G.R. // Radiochim. Acta. 2006. V. 94. № 9–11. P. 645. https://doi.org/10.1524/ract.2006.94.9-11.645
  36. Gao Y., Dau P.V., Parker B.F. et al. // Inorg. Chem. 2018. V. 57. № 12. P. 6965. https://doi.org/10.1021/acs.inorgchem.8b00654
  37. Козлова T.O., Василева Д.Н., Козлов Д.A. и др. // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1687. https://doi.org/10.31857/S0044457X22600955
  38. Gausse C., Szenknect S., Qin D.W. et al. // Eur. J. Inorg. Chem. 2016. V. 2016. № 28. P. 4615. https://doi.org/10.1002/ejic.201600517
  39. Fourest B., Lagarde G., Perrone J. et al. // New J. Chem. 1999. V. 23. № 6. P. 645. https://doi.org/10.1039/a900818g
  40. Choppin G.R. // Mar. Chem. 2006. V. 99. № 1–4. P. 83. https://doi.org/10.1016/j.marchem.2005.03.011
  41. Tang M., Chen J., Wang P. et al. // Environ. Sci. Nano. 2018. V. 5. № 10. P. 2304. https://doi.org/10.1039/C8EN00761F
  42. Zhijun G., Lijun N., Zuyi T. // J. Radioanal. Nucl. Chem. 2005. V. 266. № 2. P. 333. https://doi.org/10.1007/s10967-005-0912-5
  43. Fröhlich D.R., Kaplan U. // J. Radioanal. Nucl. Chem. 2018. V. 318. № 3. P. 1785. https://doi.org/10.1007/s10967-018-6310-6
  44. Weijuan L., Zuyi T. // J. Radioanal. Nucl. Chem. 2002. V. 254. № 1. P. 187. https://doi.org/10.1023/A:1020874405480
  45. Křepelová A., Sachs S., Bernhard G. // Radiochim. Acta. 2011. V. 99. № 5. P. 253. https://doi.org/10.1524/ract.2011.1829
  46. Chisholm-Brause C.J., Berg J.M., Matzner R.A. et al. // J. Colloid Interface Sci. 2001. V. 233. № 1. P. 38. https://doi.org/10.1006/jcis.2000.7227
  47. Thakur P., Moore R.C., Choppin G.R. // Radiochim. Acta. 2005. V. 93. № 7. P. 385. https://doi.org/10.1524/ract.2005.93.7.385
  48. Drot R., Simoni E. // 1999. № 15. № 14. P. 4820. https://doi.org/10.1021/la981596v
  49. Girvin D.C., Ames L.L., Schwab A.P. et al. // J. Colloid Interface Sci. 1991. V. 141. № 1. P. 67. https://doi.org/10.1016/0021-9797(91)90303-P
  50. Pourret O., Bollinger J.-C., Hursthouse A. et al. // Sci. Total Environ. 2022. V. 838. P. 156545. https://doi.org/10.1016/j.scitotenv.2022.156545
  51. Strawn D.G. // Soil Syst. 2021. V. 5. № 1. P. 13. https://doi.org/10.3390/soilsystems5010013
  52. Romanchuk A.Y., Gracheva N.N., Bryukhanova K.I. et al. // Mendeleev Commun. 2018. V. 28. № 3. P. 303. https://doi.org/10.1016/j.mencom.2018.05.025
  53. Katz J., Seaborg G., Morss L. // Springer Dordrecht. 1986. V. 2. 912 p. https://doi.org/10.1007/978-94-009-3155-8
  54. Dacheux N., Clavier N., Podor R. // Am. Mineral. 2013. V. 98. № 5–6. P. 833. https://doi.org/10.2138/am.2013.4307
  55. Schlenz H., Heuser J., Neumann A. et al. // Z. Krist. 2013. V. 228. № 3. P. 113. https://doi.org/10.1524/zkri.2013.1597
  56. Clavier N., Podor R., Dacheux N. // J. Eur. Ceram. Soc. 2011. V. 31. № 6. P. 941. https://doi.org/10.1016/j.jeurceramsoc.2010.12.019

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (148KB)
3.

Download (2MB)
4.

Download (148KB)
5.

Download (170KB)

Copyright (c) 2023 Т.О. Козлова, Е.Ю. Хворостинин, А.А. Родионова, Д.Н. Васильева, А.Е. Баранчиков, В.К. Иванов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies