A New Family of Trinuclear Complexes (CH3)4N[M3(µ3-F)(TFA)6(py)3] (M = Mn, Co, Ni, Cu, Zn): Synthesis, Crystal Structure, and Thermal Stability

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Trinuclear complexes Me4N[Ni3(µ3-F)(TFA)6(MeOH)2(H2O)] (1) and Me4N[M3(μ3-F)(TFA)6(py)3] (M = Mn (2), Co (3), Ni (4), Cu (5), Zn (6)) have been synthesized by crystallization from methanol solutions. Single-crystal X-ray diffraction shows that compounds 1–6 are composed of tetramethylammonium cations Me4N+ and trinuclear triangular anions [Ni3(µ3-F)(TFA)6(MeOH)2(H2O)]– (1) or [M3(μ3-F)(TFA)6(py)3]– (2–6) centered by the μ3-F atom. The bridging trifluoroacetate anions (TFA–) located along the triangle edges link pairs of M2+ cations, and the axial positions are occupied by MeOH, H2O, or pyridine (py) molecules. In 2, the pyridine molecules are nearly coplanar with the [M3F] triangle, while in the other structures they are turned almost perpendicularly. The different orientations of py molecules lead to different packing motifs: columns of alternating trinuclear anions and Me4N+ cations are formed in 2, while in 3–6 anions and cations form neutral layers. A significant role in the organization of structures 1–6 is played by non-covalent interactions, such as hydrogen bonds and stacking and CH···π interactions. Heating complexes 2–4 above 200°С turns out to lead to a stepwise thermal decomposition, which begins with the elimination of py and ends with the formation of d-metal fluoride above 300°С.

About the authors

D. S. Tereshchenko

Moscow State University

Email: tereschenko_den@mail.ru
119991, Moscow, Russia

M. E. Buzoverov

Moscow State University

Email: tereschenko_den@mail.ru
119991, Moscow, Russia

T. Yu. Glazunova

Moscow State University

Email: tereschenko_den@mail.ru
119991, Moscow, Russia

E. Kh. Lermontova

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: tereschenko_den@mail.ru
119991, Moscow, Russia

V. E. Goncharenko

Lebedev Physical Institute, Russian Academy of Sciences; Higher School of Economics

Email: tereschenko_den@mail.ru
119991, Moscow, Russia; 101000, Moscow, Russia

T. B. Shatalova

Moscow State University

Email: tereschenko_den@mail.ru
119991, Moscow, Russia

E. V. Khlopkina

Moscow State University

Email: tereschenko_den@mail.ru
119991, Moscow, Russia

I. V. Morozov

Moscow State University

Author for correspondence.
Email: tereschenko_den@mail.ru
119991, Moscow, Russia

References

  1. Никифорова М.Е., Луценко И.А., Кискин М.А. и др. // Журн. неорган. химии. 2021. Т. 66. № 9. С. 1247. Nikiforova M.E., Lutsenko I.A., Kiskin M.A. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 9. P. 1343. https://doi.org/10.1134/S0036023621090102
  2. Шарутин В.В., Шарутина О.К. // Журн. неорган. химии. 2021. Т. 66. № 3. С. 358. Sharutin. V.V., Sharutina O.K. // Russ. J. Inorg. Chem. 2021. V. 66. P. 361. https://doi.org/10.1134/S0036023621030153
  3. Сережкина Л.Б., Митина Д.С., Вологжанина А.В. и др. // Журн. неорган. химии. 2022. Т. 67. № 11. С. 1581. https://doi.org/ Serezhkina L.B., Mitina D.S., Vologzhanina A.V. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 11. P. 1769. https://doi.org/10.1134/S003602362260091510.1134/S0036023622600915https://doi.org/10.31857/S0044457X22100427
  4. Чикинева Т.Ю., Кошелев Д.С., Медведько А.В. и др. // Журн. неорган. химии. 2021. Т. 66. № 2. С. 168 Chikineva T.Y., Koshelev D.S., Medved’ko A.V. et al. // Russ. J. Inorg. Chem. 2021. V. 66. № 2. P. 170. https://doi.org/10.1134/S0036023621020054
  5. Tereshchenko D.S., Morozov I.V., Boltalin A.I. et al. // Russ. J. Inorg. Chem. 2004. V. 49. № 6. P. 836.
  6. Tereshchenko D.S., Morozov I.V., Boltalin A.I. et al. // Crystallogr. Rep. 2013. V. 58. № 1. P. 68. https://doi.org/10.1134/S106377451206017X
  7. Morozov I.V., Karpova E.V., Glazunova T.Yu. et al. // Russ. J. Coord. Chem. 2016. V. 42. № 10. P. 647. https://doi.org/10.1134/S107032841610002X
  8. Xie Z.-L., Feng M.-L., Tan B., Huang X.-Y. // CrystEngComm. 2012. V. 14. P. 4894. https://doi.org/10.1039/C2CE25169H
  9. Noack J., Fritz C., Flügel C. et al. // Dalton Trans. 2013. V. 42. P. 5706. https://doi.org/10.1039/c3dt32652g
  10. Walsh J.P.S., Meadows S.B., Ghirri A. et al. // Inorg. Chem. 2015. V. 54. № 24. P. 12019. https://doi.org/10.1021/acs.inorgchem.5b01898
  11. Reynolds J.III, Walsh K.M., Li B. et al. // Chem. Commun. 2018. V. 54. P. 9937. https://doi.org/10.1039/C8CC05402A
  12. Aulakh D., Islamoglu T., Bagundeset V.F. et al. // Chem. Mater. 2018. V. 30. № 22. P. 8332. https://doi.org/10.1021/acs.chemmater.8b03885
  13. STOE WinXPOW, version 2.25 (05-Oct-2009) © STOE & Cie GmbH.
  14. Jana2008. Version 25/10/2015. By Vaclav Petricek, Michal Dusek & Lukas Palatinus. Instirute of Physics, Academy of Sciences of the Czech Republic. Praha.
  15. PCPDFWIN. Version 2.2. June 2001. JCPDS-ICDD.
  16. Sheldrick G.M. // Acta Cryst. 2015. V. A71. P. 3. https://doi.org/10.1107/S2053273314026370
  17. Sheldrick G.M. // Acta Cryst. 2015. V. C71. P. 3. https://doi.org/10.1107/S2053229614024218
  18. Dolomanov O.V., Bourhis, L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  19. Shannon R.D. // Acta Cryst. 1976. V. A32. P. 751. https://doi.org/10.1107/S0567739476001551
  20. Кембриджский банк структурных данных органических соединений Cambridge Structural Database System (версия 2019 г).
  21. Irving H., Williams R.J.P. // J. Chem. Soc. 1953. P. 3192. https://doi.org/10.1039/JR9530003192
  22. Glazunova T.Yu., Tereschenko D.S., Buzoverov M.E. et al. // Russ. J. Coord. Chem. 2021. V. 47. № 5. P. 347 https://doi.org/10.1134/S1070328421040023
  23. Armanasco N.L., Baker M.V., Brown D.H. et al. // Inorg. Chim. Acta. 2004. V. 357. P. 4562. https://doi.org/10.1016/j.ica.2004.07.012
  24. Steiner T. // Angew. Chem. Int. Ed. 2002. V. 41. P. 48. https://doi.org/10.1002/1521-3773(20020104)41:1%3-C48::AID-ANIE48%3E3.0.CO;2-U
  25. Howard J.A.K., Hoy V.J., O’Hagan D., Smith G.T. // Tetrahedron. 1996. V. 52. № 38. P. 12613. https://doi.org/10.1016/0040-4020(96)00749-1
  26. Sierański T. // J. Mol. Model. 2017. V. 23. P. 338. https://doi.org/10.1007/s00894-017-3496-4
  27. Umezawa Y., Tsuboyama S., Honda K. et al. // Bull. Chem. Soc. Jpn. 1998. V. 71. P. 1207. https://doi.org/10.1246/bcsj.71.1207
  28. Shibasaki K., Fujii A., Mikami N., Tsuzuki S. // J. Phys. Chem. A. 2006. V. 110. P. 4397. https://doi.org/10.1021/jp0605909
  29. Kayumova D.B., Tereschenko D.S., Shatalova T.B. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 12. P. 870. https://doi.org/10.1134/S1070328422700026

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (764KB)
3.

Download (692KB)
4.

Download (1MB)
5.

Download (928KB)
6.

Download (615KB)

Copyright (c) 2023 Д.С. Терещенко, М.Е. Бузоверов, Т.Ю. Глазунова, Э.Х. Лермонтова, В.Е. Гончаренко, Т.Б. Шаталова, Е.В. Хлопкина, И.В. Морозов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies