ATOMIC LAYER DEPOSITION OF ALUMINUM-MOLYBDENUM OXIDE FILMS USING TRIMETHYLALUMINUM AND MOLYBDENUM DICHLORIDE DIOXIDE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An atomic layer deposition (ALD) of aluminum-molybdenum oxide (Al,Mo,O) films, based on cyclic reactions of trimethylaluminum (TMA) and molybdenum dichloride dioxide (MoO2Cl2) vapors, is presented. The effect of adding a water vapor dose into the ALD cycle (TMA-H2O-MoO2Cl2) was investigated. The film growth process was studied in situ using a quartz crystal microbalance (QCM). It was established that at a deposition temperature of 180°C, both the TMA-MoO2Cl2 and TMA-H2O-MoO2Cl2 processes exhibit linear growth with growth per cycle (GPC) values of 3.79 Å/cycle and 3.94 Å/cycle, respectively. According to X-ray reflectivity (XRR) and X-ray diffraction (XRD) data, the resulting films had an amorphous structure with a density of ∼3.7 g/cm3 and a root mean square (RMS) roughness in the range of 10-12 Å. Both types of films had a similar composition. The films contained Mo6+, Mo5+, and Mo4+ species.

About the authors

A. M Maksumova

Dagestan State University; Institute for Geothermal Research and Renewable Energy of the Joint Institute for High Temperatures of the Russian Academy of Sciences

Email: ilmutdina@gmail.com
Makhachkala, Russia; Makhachkala, Russia

I. S Bodalev

St. Petersburg State Technological Institute (Technical University)

St. Petersburg, Russia

S. S Etmisheva

Dagestan State University

Makhachkala, Russia

A. V Koroleva

St. Petersburg State University

St. Petersburg, Russia

M. G Shtancheva

Dagestan State University

Makhachkala, Russia

I. M Abdulagatov

Dagestan State University

Makhachkala, Russia

M. Kh Rabadanov

Dagestan State University

Makhachkala, Russia

A. S Loginova

PROTON Plant

Zelenograd, Moscow, Russia

B. A Loginov

National Research University “Moscow Institute of Electronic Technology”

Moscow, Russia

A. I Abdulagatov

Dagestan State University

Makhachkala, Russia

References

  1. Matsumoto Y., Shimanouchi S. // Procedia Eng. 2016. V. 148. P. 158. https://doi.org/10.1016/j.proeng.2016.06.507
  2. Davis B.E., Strandwitz N.C. // IEEE J. Photovolt. 2020. V. 10. N. 3. P. 722. https://doi.org/10.1109/JPHOTOV.2020.2973447
  3. Chowdhury S., Khokhar M.Q., Pham D.Ph., Yi J. // ECS J. Solid State Sci. Technol. 2022. V. 11. N. 1. P. 015004. https://doi.org/10.1149/2162-8777/ac4d83
  4. Ritala M., Kukli K., Rahtu A. et al. // Science. 2000. V. 288. P. 319. https://doi.org/10.1126/science.288.5464.319
  5. Lehmann S., Mitzscherling F., He Sh. et al. // Coatings. 2023. V. 13. N. 3. P. 641. https://doi.org/10.3390/coatings13030641
  6. Kim W., Rhee Sh.-W., Lee N. et al. // J. Vac. Sci. Technol. A. 2004. V. 22. N. 4. P. 1285. https://doi.org/10.1116/1.1764819
  7. Rahtu A., Ritala M., Leskela M. // Chem. Mater. 2001. V. 13. P. 1528. https://doi.org/10.1021/cm0012062
  8. Mazza M.F., Cabán-Acevedo M., Fu H.J. et al. // ACS Mater. Au. 2022. V. 2. N. 2. P. 74. https://doi.org/10.1021/acsmaterialsau.1c00049
  9. Gasonoo A., Ahn H.-S., Jang E.-J. et al. // Materials. 2021. V. 14. P. 2437. https://doi.org/10.3390/ma14092437
  10. Mutin P.H., Vioux A. // Chem. Mater. 2009. V. 21. N. 4. P. 582. https://doi.org/10.1021/cm802348c
  11. Anderson V.R., Cavanagh A., Abdulagatov A.I. et al. // J. Vac. Sci. Technol. A. 2014. V. 32. N. 1. P. 01A114. https://doi.org/10.1116/1.4839015
  12. Răisănen P.I., Ritala M., Leskelă M. // J. Mater. Chem. 2002. V. 12. N. 5. P. 1415. https://doi.org/10.1039/B201385C
  13. Haber J. The role of molybdenum in catalysis. London: Climax Molybdenum Co. Ltd., 1981.
  14. Drozd V.E., Tulub A.A., Aleskovski V.B., Korol'kov D.V. // Appl. Surf. Sci. 1994. V. 82/83. P. 587. https://doi.org/10.1016/0169-4332(94)90216-X
  15. Elam J.W., Groner M.D., George S.M. // Rev. Sci. Instrum. 2002. V. 73. N. 8. P. 2981. https://doi.org/10.1063/1.1490410
  16. Groner M.D., Fabreguette F.H., Elam J.W., George S.M. // Chem. Mater. 2004. V. 16. N. 4. P. 639. https://doi.org/10.1021/cm0304546
  17. George S.M. // Acc. Chem. Res. 2020. V. 53. P. 1151. https://doi.org/10.1021/acs.accounts.0c00084
  18. Beers W.W., McCarley R.E. // Inorg. Chem. 1985. V. 24. P. 472. https://doi.org/10.1021/ic00198a008
  19. Reddy B.M., Chowdhury B., Smirniotis P.G. // Appl. Catal. A. 2001. V. 211. P. 19. https://doi.org/10.1016/S0926-860X(00)00834-6
  20. Choi J.G., Thompson L.T. // Appl. Surf. Sci. 1996. V. 93. N. 2. P. 143. https://doi.org/10.1016/0169-4332(95)00317-7
  21. Al-Shihry S.S., Halawy S.A. // J. Molecular Catal. A. 1996. V. 113. P. 479.
  22. DuMont J.W., Marquardt A.E., Cano A.M., George S.M. // ACS Appl. Mater. Interf. 2017. V. 9. N. 11. P. 10296. https://doi.org/10.1021/acsami.7b01259
  23. Abdulagatov A.I., Sharma V., Murdzek J.A. et al. // J. Vac. Sci. Technol. A. 2021. V. 39. N. 2. P. 022602. https://doi.org/10.1116/6.0000834
  24. Bellenger F., Houssa M., Delabie A. et al. // J. Electrochem. Soc. 2008. V. 155. N. 2. P. G33. https://doi.org/10.1149/1.2819626
  25. Fischer A., Routzahn A., George S.M., Lill T. // J. Vac. Sci. Technol. A. 2021. V. 39. N. 3. P. 030801. https://doi.org/10.1116/6.0000894
  26. Харлампова Р.Н., Зайдын Н.М., Плясова Л.М. и др. // Кинетика и катализ. 1973. T. 14. N. 6. C. 1538.
  27. Малыгин А.А. // Журн. общ. химии. 2002. T. 72. N. 4. C. 617. Malygin A.A. // Russ. J. Gen. Chem. 2002. V. 72. N. 4. P. 575. https://doi.org/10.1023/A:1016344516638
  28. Малыгин А.А., Волкова А.Н., Кольцов С.И., Александский В.Б. // Журн. общ. химии. 1975. T. 46. N. 10. C. 2166.
  29. Малыгин А.А., Кольцов С.И., Александский В.Б. // Журн. общ. химии. 1980. T. 50. N. 12. C. 2633.
  30. Волкова А.Н., Малыгин А.А., Кольцов С.И., Александский В.Б. // Журн. общ. химии. 1975. T. 44. N. 1. C. 3.
  31. Максумова А.М., Бодалев И.С., Сулейманов С.И. и др. // Неорган. материалы. 2023. T. 59. N. 4. C. 384. https://doi.org/10.1134/S0020168523040052
  32. Maksumova A.M., Bodalev I.S., Gadzhimuradov S.G., et al. // Russ. J. Appl. Chem. 2024. V. 97. N. 7. P. 595. https://doi.org/10.1134/S1070427224070024
  33. Абдулагатов А.И., Максумова А.М., Палчаев Д.К. и др. // Журн. общ. химии. 2022. T. 92. N. 8. C. 1310. https://doi.org/10.1134/S1070363222080187
  34. Максумова А.М., Бодалев И.С., Абдулагатов И.М. и др. // Журн. общ. химии. 2024. T. 69. N. 1. C. 110. https://doi.org/10.1134/S003602362360274X
  35. Weast R.C. Handbook of Chemistry and Physics. 69th ed. Boca Raton / FL: CRC Press Inc., 1988. P. B-68.
  36. Painot J.A. // J. Electrochem. Soc. 1976. V. 123. P. 841.
  37. Moulder J.F., Stickle P.E.S., Bomben K.D. Handbook of X-Ray Photoelectron Spectroscopy. Minnesota: Physical Electronic, Inc., Eden Prairie, 1995.
  38. Seah M.P. In Practical Surface Analysis. New York: John Wiley & Sons, 1990.
  39. Clayton C.R., Lu Y.C. // Surf. Interf. Anal. 1989. V. 14. № 1-2. P. 66.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).