PHASE EQUILIBRIA AND HIGH-ENTROPY ALLOYS IN THE Cu6GeSe6 – Ag6GeS6 SYSTEM

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Compounds of the argyrodite family and the phases based on them are of interest as environmentally friendly functional materials. This work presents new data on phase equilibria in the Cu6GeSe6 – Ag6GeS6 system obtained by differential thermal analysis and X- ray powder diffraction studies. It was established that the system is not quasi- binary due to the incongruent melting of Cu6GeSe6 yet it maintains thermodynamic stability below the solidus temperature. A continuous series of solid solutions (δ- phase) with both cationic and anionic substitutions was identified between the high- temperature modifications. Limited homogeneity regions were determined based on the low- temperature modifications. The formation of solid solutions lowers the temperatures of polymorphic transitions and expands the homogeneity range of the ion- conducting cubic δ- phase down to room temperature and below. At room temperature, the homogeneity range of the δ- phase spans 10- 70 mol. % Ag6GeS6. The δ- phase within the composition range of 36- 64 mol. % Ag6GeS6 can be classified as a high- entropy alloy, which opens additional prospects for tailoring its properties through entropy- driven structural stabilization.

About the authors

A. N Poladova

Institute of Catalysis and Inorganic Chemistry

I. F Huseynova

Institute of Catalysis and Inorganic Chemistry

Baku, Azerbaijan

I. J Alverdiyev

Ganja State University

Baku, Azerbaijan

V. A Gasymov

Institute of Catalysis and Inorganic Chemistry

Baku, Azerbaijan

L. F Mashadiyeva

Institute of Catalysis and Inorganic Chemistry

Baku, Azerbaijan

M. B Babanly

Institute of Catalysis and Inorganic Chemistry; Azerbaijan State University of Economics; Baku State University

Email: babanlymb@gmail.com
Baku, Azerbaijan; Baku, Azerbaijan; Baku, Azerbaijan

References

  1. Woodrow P. Chalcogenides: Advances in Research and Applications. New York: Nova Science Pub Inc., 2018.
  2. Liu X., Lee S., Furdyna J.K. et al. Chalcogenide. From 3D to 2D and Beyond. London: Elsevier Science, 2019.
  3. Khan M.E., J. Metal-Chalcogenide Nanocomposites. Fundamentals, Properties and Industrial Applications. Woodhead Publishing, 2023.
  4. Kumar A., Gupta R.K. 2D Semiconducting Materials for Electronic, Photonic, and Optoelectronic Devices. CRC Press, 2024. https://doi.org/10.1201/9781003439448
  5. Lin S., Li W., Pei Y. / Mater. Today. 2021. V. 48. P. 198. https://doi.org/10.1016/j.mattod.2021.01.007
  6. Jiang Q., Li S., Luo Y. et al. / ACS Appl. Mater. Inter-faces. 2020. V. 12. P. 54653. https://doi.org/10.1021/acsami.0c15877
  7. Fan Y., Wang G., Wang R. et al. / J. Alloys Compd. 2020. V. 822. P. 153665. https://doi.org/10.1016/j.jallcom.2020.153665
  8. Semkiv I.V., Kashuba N.Y., Ilchuk H.A. et al. / Low Temp. Phys. 2023. V. 49. P. 1058. https://doi.org/10.1063/10.0020599
  9. Pogodin A.I., Filep M.J., Vorobiev S. et al. / SPQEO. 2023. V. 26. P. 270. https://doi.org/10.15407/spqeo26.03.270
  10. Alverdiyev I.J, Imamaliyeva S.Z, Akhmedov E.I. et al. / Azerb. Chem. J. 2023. V. 64. N. 4. P. 21. https://doi.org/10.32737/0005-2531-2023-4-21-30
  11. Heep B.K., Weldert K.S., Krysiak Y. et al. / Chem. Mater. 2017. V. 29. P. 4833. https://doi.org/10.1021/acs.chemmater.7b00767
  12. Li, W., Lin, S., Ge, B. et al. / Adv. Sci. 2016. V. 3. P. 1600196. https://doi.org/10.1002/advs.201600196
  13. Lin S., Hou Y., Yang J. et al. / ACS Appl. Mater. Interfaces. 2024. V. 16. P. 58912. https://doi.org/10.1021/acsami.4c14311
  14. Sardarly R.M., Ashirov G.M., Mashadiyeva. et al. / Mod. Phys. Lett. B. 2023. V. 36. P. 2250171. https://doi.org/10.1142/S0217984922501718
  15. Li L., Liu Y., Dai J. et al. / J. Mater. Chem. C. 2016. V. 4. P. 5806. https://doi.org/10.1039/C6TC00810K
  16. Studenyak I.P., Pogodin A.I., Studenyak V.I. et al. / Solid State Ionics. 2020. V. 345. P. 115183. https://doi.org/10.1016/j.ssi.2019.115183
  17. Saka H. Introduction to Phase Diagrams. London: World Scientific Publishing Company, 2020. P. 188. https://doi.org/10.1142/11368
  18. Нипан Г.Д., Бузанов Г.А. / Журн. неорган. химии. 2024. T. 69. № 10. C. 1432. https://doi.org/10.1134/S003602362460182X
  19. Плешаков К.Д., Дворянова Е.М. Гаркушин И.К. / Журн. неорган. химии. 2025. T. 70. C. 268. https://doi.org/10.1134/S0036023624603751
  20. Машадиева Л.Ф., Алиева З.М., Мирзоева Р.Д. / Журн. неорган. химии. 2022. T. 67. C. 606. https://doi.org/10.1134/S0036023622050126
  21. Babanly M.B., Mashadiyeva L.F., Babanly D.M. / Russ. J. Inorg. Chem. 2019. V. 64. № 13. P. 1649. http://dx.doi.org/10.1134/S0036023619130035
  22. Черкасов Д.Г., Климова Ю.С., Данилина В.В. / Журн. неорган. химии. 2025. T. 70. C. 566. https://doi.org/10.1134/S0036023625600510
  23. Babanly M.B., Yusibov Y.A., Imamaliyeva S.Z. et al. / J. Ph. Equilibria Diffus. 2024. V. 45. P. 228. https://doi.org/10.1007/s11669-024-01088-w
  24. Amiraslanova A.J., Babanly K.N., Imamaliyeva S.Z. et al. / Azerb. Chem. J. 2023. № 2. P. 169. https://doi.org/10.32737/0005-2531-2022-1-89-93
  25. Amiraslanova A.J., Babanly K.N., Imamaliyeva S.Z. et al. / Appl. Chem. Eng. 2023. V. 6. P. 1. https://doi.org/10.24294/ace.v6i2.2162
  26. Амирасланова А.Дж., Мамедова А.Т., Имамалиева С.З. / Ж. Неорг. хим. 2023. T. 68. C. 1099. https://doi.org/10.1134/S0036023623601046
  27. Байрамова У.Р., Бабанлы К.Н., Машадиева Л.Ф. и др. / Журн. неорган. химии. 2023. T. 68. C. 1614.
  28. Babanly M.B., Mashadiyeva L.F., Imamaliyeva S.Z. et al. / Chem. Prob. 2024. V. 3. P. 243. https://doi.org/10.32737/2221-8688-2024-3-243-280
  29. Bayramova U.R., Babanly K.N., Ahmadov E.I. et al. / J. Ph. Equilibria Diffus. 2023. V. 44. P. 509. https://doi.org/10.1007/s11669-023-01054-y
  30. Ye Y., Wang Q., Lu J. et al. / Mater. Today. 2016. V. 19. P. 349. https://doi.org/10.1016/j.mattod.2015.11.026
  31. Miracle D., Senkov O. / Acta Mater. 2017. V. 122. P. 448. https://doi.org/10.1016/j.actamat.2016.08.081
  32. Zhang W., Liaw P.K., Zhang Y. / Sci. China Mater. 2018. V. 61. P. 2. https://doi.org/10.1007/s40843-017-9195-8
  33. Лебедева О.Е., Головин С.Н., Селиверстов Е.С. / Журн. неорган. химии. 2025. T. 70. C. 33. https://doi.org/10.1134/S0036023624603209
  34. Жилина Е.М., Русских А.С., Красиков С.А. и др. / Журн. неорган. химии. 2022. T. 67. C. 825. https://doi.org/10.1134/S0036023622060249
  35. Гагарин П.Г., Гуськов А.В., Гуськов В.Н. / Журн. неорган. химии. T. 70. 2025. C. 551. https://doi.org/10.1134/S0036023624603878
  36. Евсеев Н.С., Матвеев А.Е., Никитин П.Ю. / Журн. неорган. химии. T. 67. 2022. C. 1194.
  37. Yu B., Ren Y., Zeng Y. et al. / J. Mater. Res. Technol. 2024. V. 29. P. 2689. https://doi.org/10.1016/j.jmrt.2024.01.246
  38. Krishna A., Noble N., Radhika N. et al. // J. Manuf. Process. 2024. V. 109. P. 583. https://doi.org/10.1016/j.jmapro.2023.12.039
  39. Senkov O.N., Miracle D.B., Chaput K.J. et al. // J. Mater. Res. 2018. V. 33. P. 3092. https://doi.org/10.1557/jmr.2018.153
  40. Buckingham M.A., Ward-O'Brien B., Xiao W. // Chem. Commun. 2022. V. 5. P. 8025. https://doi.org/10.1039/D2CC01796B
  41. Seshita A., Yamashita A., Fujita T. et al. // J. Alloys Compd. 2024. V. 1004. P. 175679. https://doi.org/10.1016/j.jallcom.2024.175679
  42. Deng Z., Olvera A., Casamento J. et al. // Chem. Mater. 2020. V. 32. P. 6070. https://doi.org/10.1021/acs.chemmater.0c01555
  43. Carcaly C., Chezeau N., Rivet J. et al. // Bull. Soc. Chim. Fr. 1973. V. 1. P. 1191.
  44. Tomashik V. Non-Ferrous Metal Ternary Systems. Semiconductor Systems: Phase Diagrams, Crystallographic and Thermodynamic Data / Eds. Effenberg G., Ilyenko S. Berlin: Springer-Verlag, 2007. 3rd ed. P. 288-299. https://doi.org/10.1007/10915981_23
  45. Onoda M., Ishii M., Pattison P. et al. // J. Solid State Chem. 1999. V. 146. P. 355. https://doi.org/10.1006/jssc.1999.8362
  46. Moroz V.N. // Inorg. Mater. 1990. V. 26. P. 1830.
  47. Prince A. // VCH V. 1988. V. 2. P. 189.
  48. Chbani N., Cai X., Loireau Lozac'h A.M. et al. // Mater. Res. Bull. 1992. V. 27. P. 1355. https://doi.org/10.1016/0025-5408(92)90101-5
  49. Eulenberger G. // Monatsh. Chem. 1977. V. 108. P. 901. https://doi.org/10.1007/BF00898056
  50. Gorochov O. // Bull. Soc. Chim. Fr. 1968. V. 6. P. 2263.
  51. Emsley J. The Elements / 3rd ed. London: Clarendon Press, 1998.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).