METAL COMPLEX CHROMOPHORES BASED ON o-IMINOBENZOQUINONATO DERIVATIVES OF COBALT(III), COPPER(II) AND NICKEL(II): MOLECULAR STRUCTURE, ELECTRONIC ABSORPTION SPECTRA AND THERMAL PROPERTIES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A series of the 3d-row transition metal complexes was synthesized on the base of o-aminophenol АРН2N2Ph augmented by azo-fragment: bis-o-iminobenzosemiquinonate derivatives (imSQN2Ph)2Ni (1), (imSQN2Ph)2Cu (2), as well as mixed-ligand compound (imSQN2Ph)(APN2Ph)Co (3) (where imSQN2Ph and APN2Ph are radical anion and dianion redox-forms of ligand АРН2N2Ph, correspondingly). The molecular structure of ligand АРН2N2Ph and complexes 1·C7H8, 2·C7H8 and 3·C7H8 was determined using x-ray diffraction analysis (CIF files CCDC Nos 2444549-2444553, correspondingly). The planar coordination environment of metal center caused the mutual planar displacement of frontier orbitals HOMO and LUMO, that is why low-energy charge transfer "ligand-to-ligand" is implemented in compounds 1-3, corresponding the light absorption in the IR-region. Obtained metal complexes are characterized by rich set of redox states, predominantly provided by redox-active nature of ligands. The compounds of nickel(II) 1 and cobalt(III) 3 are volatile and distinguished by high thermostability and completeness transfer into the vapor phase, that is the favourable factor for the design of optoelectronic devices based on them using the vacuum deposition method.

About the authors

K. I Pashanova

G.A. Razuvaev Institute of Organometallic Chemistry

Email: pashanova@iomc.ras.ru
Nizhny Novgorod, Russia

N. M Lazarev

G.A. Razuvaev Institute of Organometallic Chemistry

Nizhny Novgorod, Russia

I. A Yakushev

N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Moscow, Russia

A. A Zolotukhin

G.A. Razuvaev Institute of Organometallic Chemistry

Nizhny Novgorod, Russia

T. A Kovylina

G.A. Razuvaev Institute of Organometallic Chemistry

Nizhny Novgorod, Russia

M. V Arsenyev

G.A. Razuvaev Institute of Organometallic Chemistry

Nizhny Novgorod, Russia

A. S Bogomyakov

International Tomography Centre Siberian Branch of Russian Academy of Sciences

Novosibirsk, Russia

A. D Maximova

National Research Centre "Kurchatov Institute"

Moscow, Russia

P. V Dorovatovskii

National Research Centre "Kurchatov Institute"

Moscow, Russia

A. V Piskunov

G.A. Razuvaev Institute of Organometallic Chemistry

Moscow, Russia

References

  1. Griffiths J. // Color. Technol. 1981. V. 11. № 1. P. 37. https://doi.org/10.1111/j.1478-4408.1981.tb03714x
  2. Tyagi V., Rahim N.A.A., Rahim N.A. et al. // Renew. Sustain. Energy Rev. 2013. V. 20. P. 443. https://doi.org/10.1016/j.rser.2012.09.028
  3. Goetzberger A., Hebling C., Schock H.-W. // Mater. Sci. Eng., R: Rep. 2003. V. 40. № 1. P. 1. https://doi.org/10.1016/S0927-796X(02)00092-X
  4. Grätzel M. // Inorg. Сhem. 2005. V. 44. № 20. P. 6841. https://doi.org/10.1021/ic0508371
  5. Hegedus S., Luque A. Handbook of photovoltaic science and engineering. N.Y.: Wiley, 2010. https://doi.org/10.1002/9780470974704
  6. Reinders A., Verlinden P., Van Sark W. et al. Photovoltaic Solar Energy. From Fundamentals to Applications. Hoboken: John Wiley & Sons, 2017.
  7. Housecroft C.E., Constable E.C. // Chem. Sci. 2022. V. 13. P. 1225. https://doi.org/10.1039/D1SC06828H
  8. Смирнова Е.А., Беседина М.А., Карушев М.П. и др. // Журн. физ. химии. 2016. Т. 90. № 5. С. 808.
  9. Agrawal G.P. Nonlinear fiber optics, in Nonlinear Science at the Dawn of the 21st Century. Heidelberg: Springer Berlin, 2000. https://doi.org/10.1007/3-540-46629-0
  10. Davis C.C., Murphy T.E. // IEEE Signal Process. Mag. 2011. V. 28. P. 147. https://doi.org/10.1109/MSP.2011.941096
  11. Mitschke F. Fiber optics. Berlin: Springer Berlin, 2016. https://doi.org/10.1007/978-3-662-52764-1
  12. Granqvist C.G. // Solid State Ionics. 1992. V. 53–56. P. 479. https://doi.org/10.1016/0167-2738(92)90418-O
  13. Mortimer R.J. // Chem. Soc. Rev. 1997. V. 26. P. 147. https://doi.org/10.1039/CS9972600147
  14. Rosseinsky D.R., Mortimer R.J. // Adv. Mater. 2001. V. 13. № 11. P. 783. https://doi.org/10.1002/1521-4095(200106)13:11<783::AID-ADMA783>3.0.CO;2-D
  15. Nejad M.A.F., Ranjbar S., Parolo C. et al. // Mater. Today. 2021. V. 50. P. 476. https://doi.org/10.1016/j.mattod.2021.06.015
  16. Miao Q., Gao J., Wang Z. et al. // Inorg. Chim. Acta. 2011. V. 376. № 1. P. 619. https://doi.org/10.1016/j.ica.2011.07.046
  17. Poddel'sky A.I., Cherkasov V.K., Abakumov G.A. // Coord. Chem. Rev. 2009. V. 253. P. 291. https://doi.org/10.1016/j.ccr.2008.02.004
  18. Pashanova K.I., Poddel'sky A.I., Piskunov A.V. // Coord. Chem. Rev. 2022. V. 459. P. 214399. https://doi.org/10.1016/j.ccr.2021.214399
  19. Sekar N., Gehlot V.Y. // Resonance. 2010. V. 15. P. 819. https://doi.org/10.1007/s12045-010-0091-8
  20. Giribabu L., Kanaparthi R.K., Velkannan V. // The Chem. Rec. 2012. V. 12. № 3. P. 306. https://doi.org/10.1002/tcr.201100044
  21. Broere D.L., Plessius R., van der Vlugt J.I. // Chem. Soc. Rev. 2015. V. 44. P. 6886. https://doi.org/10.1039/c5cs00161g
  22. Luca O.R., Crabtree R.H. // Chem. Soc. Rev. 2013. V. 42. P. 1440. https://doi.org/10.1039/c2cs35228a
  23. Sobottka S., Nößler M., Ostericher A.L. et al. // Chem. Eur. J. 2020. V. 26. № 6. P. 1314. https://doi.org/10.1002/chem.201903700
  24. Okabe N., Aziyama T., Odoko M. // Acta Crystallogr., Sect. E: Struct. Rep. Online. 2005. V. 61. P. m2154. https://doi.org/10.1107/S160053680503062X
  25. Romashev N.F., Abramov P.A., Bakaev I.V. et al. // Inorg. Chem. 2022. V. 61. № 4. P. 2105. https://doi.org/10.1021/acs.inorgchem.1c03314
  26. Sarkar P., Manamel L.T., Saha P. et al. // Mater. Horiz. 2025. V. 12. P. 246. https://doi.org/10.1039/D4MH00928B
  27. Kramer W.W., Cameron L.A., Zarkesh R.A. et al. // Inorg. Chem. 2014. V. 53. № 16. P. 8825. https://doi.org/10.1021/ic5017214
  28. Pashanova K.I., Bitkina V.O., Yakushev I.A. et al. // Molecules. 2021. V. 26. № 15. P. 4622. https://doi.org/10.3390/molecules26154622
  29. Aegerter M.A., Mennig M. Sol-gel technologies for glass producers and users. New York: Springer New York, 2004. https://doi.org/10.1007/978-0-387-88953-5
  30. Tjona M. // Adv. Mater. Res. 2013. V. 2. N: 4. P. 195. https://doi.org/10.12989/amr.2013.2.4.195
  31. Pashanova K.I., Lazarev N.M., Kukinov A.A. et al. // ChemistrySelect. 2022. V. 7. N: 10. P. e202104477. https://doi.org/10.1002/slct.202104477
  32. Pashanova K.I., Lazarev N.M., Zolotukhin A.A. et al. // Chemistry. Select. 2024. V. 9. N: 15. P. e202304536. https://doi.org/10.1002/slct.202304536
  33. Pashanova K.I., Yakushev I.A., Lazarev N.M. et al. // Russ. J. Inorg. Chem. 2024. V. 69. N: 11. P. 1671. https://doi.org/10.1134/S0036023624601612
  34. Neuthe K., Popeney C.S., Bialecka K. // Polyhedron. 2014. V. 81. P. 583. https://doi.org/10.1016/j.poly.2014.07.015
  35. Salojarvi E., Peuronen A., Huhtinen H. et al. // Inorg. Chem. Commun. 2020. V. 112. P. 107711. https://doi.org/10.1016/j.inoche.2019.107711
  36. O'Regan B., Grätzel M. // Nature. 1991. V. 353. P. 737. https://doi.org/10.1038/353737a0
  37. Gershon T. // Mater. Sci. Technol. 2011. V. 27. N: 9. P. 1357. https://doi.org/10.1179/026708311X13081465539809
  38. Armstrong N.R., Carter C., Donley C. et al. // Thin Solid Films. 2003. V. 445. N: 2. P. 342. https://doi.org/10.1016/j.tsf.2003.08.067
  39. Armstrong N.R., Veneman P.A., Ratcliff E. et al. // Acc. Chem. Res. 2009. V. 42. N: 11. P. 1748. https://doi.org/10.1021/ar900096f
  40. Goutman K., Dalpati G., Sharma H. et al. // J. Mater. Chem. A. 2021. V. 9. N: 31. P. 16621. https://doi.org/10.1039/D1TA01291F
  41. Хоменко Т.Н., Саломатина О.В., Курбакова С.Ю. и др. // Журн. орган. химии. 2006. Т. 42. № 11. С. 1666.
  42. Гордон А., Форд Р. Спутник химика. Физико-химические свойства, методики, библиография. М.: Мир, 1976.
  43. Райхардт К. Растворители и эффекты среды в органической химии. М.: Мир, 1991.
  44. Rajput A., Sharma A.K., Barman S.K. // Inorg. Chem. 2013. V. 53. P. 36. https://doi.org/10.1021/ic401985d
  45. Piskunov A.V., Pashanova K.I., Ershova I.V. et al. // Russ. Chem. Bull. 2019. V. 68. P. 757. https://doi.org/10.1007/s11172-019-2483-6
  46. Piskunov A.V., Pashanova K.I., Bogomyakov A.S. et al. // Dalton Trans. 2018. V. 47. P. 15049. https://doi.org/10.1039/c8dt02733a
  47. Okuniewski A., Rosiak D., Chojnacki J. // Polyhedron. 2015. V. 90. P. 47. https://doi.org/10.1016/j.poly.2015.01.035
  48. Yang L., Powell D.R., Houser R.P. // Dalton Trans. 2007. V. 9. N: 9. P. 955. https://doi.org/10.1039/b617136b
  49. Brown S.N. // Inorg. Chem. 2012. V. 51. N: 13. P. 1251. https://doi.org/10.1021/ic202764j
  50. Mukherjee R. // Inorg. Chem. 2020. V. 59. N: 18. P. 12961. https://doi.org/10.1021/acs.inorgchem.0c00240
  51. Smith A.L., Clapp L.A., Hardcastle K.I. // Polyhedron. 2010. V. 29. P. 164. https://doi.org/10.1016/j.poly.2009.06.046
  52. Paul G.C., Ghorai S., Mukherjee C. // Chem. Commun. 2017. V. 53. P. 8022. https://doi.org/10.1039/c7cc03486e
  53. Bill E., Bothe E., Chaudhuri P. et al. // Chem. Eur. J. 2005. V. 11. P. 204. https://doi.org/10.1002/chem.200400850
  54. Piskunov A.V., Pashanova K.I., Bogomyakov A.S. et al. // Polyhedron. 2020. P. 114610. https://doi.org/10.1016/j.poly.2020.114610
  55. Paretzki A., Bubrin M., Fiedler J. et al. // Chem. Eur. J. 2014. V. 20. P. 5414. https://doi.org/10.1002/chem.201304316
  56. Mukherjee A., Mukherjee R. // Ind. J. Chem. 2011. V. 50A. P. 484.
  57. Piskunov A.V., Pashanova K.I., Bogomyakov A.S. et al. // Polyhedron. 2016. V. 119. P. 286. https://doi.org/10.1016/j.poly.2016.08.033
  58. Mukherjee C., Pieper U., Bothe E. et al. // Inorg. Chem. 2008. V. 47. N: 19. P. 8943. https://doi.org/10.1021/ic8009767
  59. Chaudhuri P., Verani C.N., Bill E. et al. // J. Am. Chem. Soc. 2001. V. 123. N: 10. P. 2213. https://doi.org/10.1021/ja003831d
  60. Cardona C.M., Li W., Kaifer A.E. et al. // Adv. Mater. 2011. V. 23. N: 20. P. 2367. https://doi.org/10.1002/adma/201004554

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Дополнительные материалы к статье
Download (666KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).