METAL COMPLEX CHROMOPHORES BASED ON o-IMINOBENZOQUINONATO DERIVATIVES OF COBALT(III), COPPER(II) AND NICKEL(II): MOLECULAR STRUCTURE, ELECTRONIC ABSORPTION SPECTRA AND THERMAL PROPERTIES
- Authors: Pashanova K.I1, Lazarev N.M1, Yakushev I.A2, Zolotukhin A.A1, Kovylina T.A1, Arsenyev M.V1, Bogomyakov A.S3, Maximova A.D4, Dorovatovskii P.V4, Piskunov A.V1
-
Affiliations:
- G.A. Razuvaev Institute of Organometallic Chemistry
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- International Tomography Centre Siberian Branch of Russian Academy of Sciences
- National Research Centre "Kurchatov Institute"
- Issue: Vol 70, No 11 (2025)
- Pages: 1543-1560
- Section: КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ
- URL: https://journals.rcsi.science/0044-457X/article/view/378183
- DOI: https://doi.org/10.7868/S3034560X25110122
- ID: 378183
Cite item
Abstract
About the authors
K. I Pashanova
G.A. Razuvaev Institute of Organometallic Chemistry
Email: pashanova@iomc.ras.ru
Nizhny Novgorod, Russia
N. M Lazarev
G.A. Razuvaev Institute of Organometallic ChemistryNizhny Novgorod, Russia
I. A Yakushev
N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscow, Russia
A. A Zolotukhin
G.A. Razuvaev Institute of Organometallic ChemistryNizhny Novgorod, Russia
T. A Kovylina
G.A. Razuvaev Institute of Organometallic ChemistryNizhny Novgorod, Russia
M. V Arsenyev
G.A. Razuvaev Institute of Organometallic ChemistryNizhny Novgorod, Russia
A. S Bogomyakov
International Tomography Centre Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
A. D Maximova
National Research Centre "Kurchatov Institute"Moscow, Russia
P. V Dorovatovskii
National Research Centre "Kurchatov Institute"Moscow, Russia
A. V Piskunov
G.A. Razuvaev Institute of Organometallic ChemistryMoscow, Russia
References
- Griffiths J. // Color. Technol. 1981. V. 11. № 1. P. 37. https://doi.org/10.1111/j.1478-4408.1981.tb03714x
- Tyagi V., Rahim N.A.A., Rahim N.A. et al. // Renew. Sustain. Energy Rev. 2013. V. 20. P. 443. https://doi.org/10.1016/j.rser.2012.09.028
- Goetzberger A., Hebling C., Schock H.-W. // Mater. Sci. Eng., R: Rep. 2003. V. 40. № 1. P. 1. https://doi.org/10.1016/S0927-796X(02)00092-X
- Grätzel M. // Inorg. Сhem. 2005. V. 44. № 20. P. 6841. https://doi.org/10.1021/ic0508371
- Hegedus S., Luque A. Handbook of photovoltaic science and engineering. N.Y.: Wiley, 2010. https://doi.org/10.1002/9780470974704
- Reinders A., Verlinden P., Van Sark W. et al. Photovoltaic Solar Energy. From Fundamentals to Applications. Hoboken: John Wiley & Sons, 2017.
- Housecroft C.E., Constable E.C. // Chem. Sci. 2022. V. 13. P. 1225. https://doi.org/10.1039/D1SC06828H
- Смирнова Е.А., Беседина М.А., Карушев М.П. и др. // Журн. физ. химии. 2016. Т. 90. № 5. С. 808.
- Agrawal G.P. Nonlinear fiber optics, in Nonlinear Science at the Dawn of the 21st Century. Heidelberg: Springer Berlin, 2000. https://doi.org/10.1007/3-540-46629-0
- Davis C.C., Murphy T.E. // IEEE Signal Process. Mag. 2011. V. 28. P. 147. https://doi.org/10.1109/MSP.2011.941096
- Mitschke F. Fiber optics. Berlin: Springer Berlin, 2016. https://doi.org/10.1007/978-3-662-52764-1
- Granqvist C.G. // Solid State Ionics. 1992. V. 53–56. P. 479. https://doi.org/10.1016/0167-2738(92)90418-O
- Mortimer R.J. // Chem. Soc. Rev. 1997. V. 26. P. 147. https://doi.org/10.1039/CS9972600147
- Rosseinsky D.R., Mortimer R.J. // Adv. Mater. 2001. V. 13. № 11. P. 783. https://doi.org/10.1002/1521-4095(200106)13:11<783::AID-ADMA783>3.0.CO;2-D
- Nejad M.A.F., Ranjbar S., Parolo C. et al. // Mater. Today. 2021. V. 50. P. 476. https://doi.org/10.1016/j.mattod.2021.06.015
- Miao Q., Gao J., Wang Z. et al. // Inorg. Chim. Acta. 2011. V. 376. № 1. P. 619. https://doi.org/10.1016/j.ica.2011.07.046
- Poddel'sky A.I., Cherkasov V.K., Abakumov G.A. // Coord. Chem. Rev. 2009. V. 253. P. 291. https://doi.org/10.1016/j.ccr.2008.02.004
- Pashanova K.I., Poddel'sky A.I., Piskunov A.V. // Coord. Chem. Rev. 2022. V. 459. P. 214399. https://doi.org/10.1016/j.ccr.2021.214399
- Sekar N., Gehlot V.Y. // Resonance. 2010. V. 15. P. 819. https://doi.org/10.1007/s12045-010-0091-8
- Giribabu L., Kanaparthi R.K., Velkannan V. // The Chem. Rec. 2012. V. 12. № 3. P. 306. https://doi.org/10.1002/tcr.201100044
- Broere D.L., Plessius R., van der Vlugt J.I. // Chem. Soc. Rev. 2015. V. 44. P. 6886. https://doi.org/10.1039/c5cs00161g
- Luca O.R., Crabtree R.H. // Chem. Soc. Rev. 2013. V. 42. P. 1440. https://doi.org/10.1039/c2cs35228a
- Sobottka S., Nößler M., Ostericher A.L. et al. // Chem. Eur. J. 2020. V. 26. № 6. P. 1314. https://doi.org/10.1002/chem.201903700
- Okabe N., Aziyama T., Odoko M. // Acta Crystallogr., Sect. E: Struct. Rep. Online. 2005. V. 61. P. m2154. https://doi.org/10.1107/S160053680503062X
- Romashev N.F., Abramov P.A., Bakaev I.V. et al. // Inorg. Chem. 2022. V. 61. № 4. P. 2105. https://doi.org/10.1021/acs.inorgchem.1c03314
- Sarkar P., Manamel L.T., Saha P. et al. // Mater. Horiz. 2025. V. 12. P. 246. https://doi.org/10.1039/D4MH00928B
- Kramer W.W., Cameron L.A., Zarkesh R.A. et al. // Inorg. Chem. 2014. V. 53. № 16. P. 8825. https://doi.org/10.1021/ic5017214
- Pashanova K.I., Bitkina V.O., Yakushev I.A. et al. // Molecules. 2021. V. 26. № 15. P. 4622. https://doi.org/10.3390/molecules26154622
- Aegerter M.A., Mennig M. Sol-gel technologies for glass producers and users. New York: Springer New York, 2004. https://doi.org/10.1007/978-0-387-88953-5
- Tjona M. // Adv. Mater. Res. 2013. V. 2. N: 4. P. 195. https://doi.org/10.12989/amr.2013.2.4.195
- Pashanova K.I., Lazarev N.M., Kukinov A.A. et al. // ChemistrySelect. 2022. V. 7. N: 10. P. e202104477. https://doi.org/10.1002/slct.202104477
- Pashanova K.I., Lazarev N.M., Zolotukhin A.A. et al. // Chemistry. Select. 2024. V. 9. N: 15. P. e202304536. https://doi.org/10.1002/slct.202304536
- Pashanova K.I., Yakushev I.A., Lazarev N.M. et al. // Russ. J. Inorg. Chem. 2024. V. 69. N: 11. P. 1671. https://doi.org/10.1134/S0036023624601612
- Neuthe K., Popeney C.S., Bialecka K. // Polyhedron. 2014. V. 81. P. 583. https://doi.org/10.1016/j.poly.2014.07.015
- Salojarvi E., Peuronen A., Huhtinen H. et al. // Inorg. Chem. Commun. 2020. V. 112. P. 107711. https://doi.org/10.1016/j.inoche.2019.107711
- O'Regan B., Grätzel M. // Nature. 1991. V. 353. P. 737. https://doi.org/10.1038/353737a0
- Gershon T. // Mater. Sci. Technol. 2011. V. 27. N: 9. P. 1357. https://doi.org/10.1179/026708311X13081465539809
- Armstrong N.R., Carter C., Donley C. et al. // Thin Solid Films. 2003. V. 445. N: 2. P. 342. https://doi.org/10.1016/j.tsf.2003.08.067
- Armstrong N.R., Veneman P.A., Ratcliff E. et al. // Acc. Chem. Res. 2009. V. 42. N: 11. P. 1748. https://doi.org/10.1021/ar900096f
- Goutman K., Dalpati G., Sharma H. et al. // J. Mater. Chem. A. 2021. V. 9. N: 31. P. 16621. https://doi.org/10.1039/D1TA01291F
- Хоменко Т.Н., Саломатина О.В., Курбакова С.Ю. и др. // Журн. орган. химии. 2006. Т. 42. № 11. С. 1666.
- Гордон А., Форд Р. Спутник химика. Физико-химические свойства, методики, библиография. М.: Мир, 1976.
- Райхардт К. Растворители и эффекты среды в органической химии. М.: Мир, 1991.
- Rajput A., Sharma A.K., Barman S.K. // Inorg. Chem. 2013. V. 53. P. 36. https://doi.org/10.1021/ic401985d
- Piskunov A.V., Pashanova K.I., Ershova I.V. et al. // Russ. Chem. Bull. 2019. V. 68. P. 757. https://doi.org/10.1007/s11172-019-2483-6
- Piskunov A.V., Pashanova K.I., Bogomyakov A.S. et al. // Dalton Trans. 2018. V. 47. P. 15049. https://doi.org/10.1039/c8dt02733a
- Okuniewski A., Rosiak D., Chojnacki J. // Polyhedron. 2015. V. 90. P. 47. https://doi.org/10.1016/j.poly.2015.01.035
- Yang L., Powell D.R., Houser R.P. // Dalton Trans. 2007. V. 9. N: 9. P. 955. https://doi.org/10.1039/b617136b
- Brown S.N. // Inorg. Chem. 2012. V. 51. N: 13. P. 1251. https://doi.org/10.1021/ic202764j
- Mukherjee R. // Inorg. Chem. 2020. V. 59. N: 18. P. 12961. https://doi.org/10.1021/acs.inorgchem.0c00240
- Smith A.L., Clapp L.A., Hardcastle K.I. // Polyhedron. 2010. V. 29. P. 164. https://doi.org/10.1016/j.poly.2009.06.046
- Paul G.C., Ghorai S., Mukherjee C. // Chem. Commun. 2017. V. 53. P. 8022. https://doi.org/10.1039/c7cc03486e
- Bill E., Bothe E., Chaudhuri P. et al. // Chem. Eur. J. 2005. V. 11. P. 204. https://doi.org/10.1002/chem.200400850
- Piskunov A.V., Pashanova K.I., Bogomyakov A.S. et al. // Polyhedron. 2020. P. 114610. https://doi.org/10.1016/j.poly.2020.114610
- Paretzki A., Bubrin M., Fiedler J. et al. // Chem. Eur. J. 2014. V. 20. P. 5414. https://doi.org/10.1002/chem.201304316
- Mukherjee A., Mukherjee R. // Ind. J. Chem. 2011. V. 50A. P. 484.
- Piskunov A.V., Pashanova K.I., Bogomyakov A.S. et al. // Polyhedron. 2016. V. 119. P. 286. https://doi.org/10.1016/j.poly.2016.08.033
- Mukherjee C., Pieper U., Bothe E. et al. // Inorg. Chem. 2008. V. 47. N: 19. P. 8943. https://doi.org/10.1021/ic8009767
- Chaudhuri P., Verani C.N., Bill E. et al. // J. Am. Chem. Soc. 2001. V. 123. N: 10. P. 2213. https://doi.org/10.1021/ja003831d
- Cardona C.M., Li W., Kaifer A.E. et al. // Adv. Mater. 2011. V. 23. N: 20. P. 2367. https://doi.org/10.1002/adma/201004554
Supplementary files


