SYNTHESIS, CRYSTAL STRUCTURE AND THERMAL DECOMPOSITION OF [M(NH3)6]4[Fe(CN)6]3·12H2O (M = Ir, Rh) IN DIFFERENT ATMOSPHERES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

New double complex salts [Ir(NH3)6]4[Fe(CN)6]3·12H2O and [Rh(NH3)6]4[Fe(CN)6]3·12H2O were synthesized and structurally characterized for the first time. The thermal behavior of the synthesized salts in reducing (He/H2), inert (He) and oxidizing (Ar/O2) atmospheres was studied in detail. The final product of decomposition of the double complex salts [Ir(NH3)6]4[Fe(CN)6]3·12H2O in reducing and inert atmospheres is a mixture of face-centered cubic and hexagonal close-packed nanosized solid solutions of Ir-Fe, and amorphous carbon. The decomposition of [Rh(NH3)6]4[Fe(CN)6]3·12H2O in the same atmospheres leads to the formation of a mixture of ordered and disordered Rh-Fe nanoalloys containing amorphous carbon. In an oxidizing atmosphere, a mixture of metal oxides and metallic iridium (or rhodium) is formed. Based on the data obtained, thermal decomposition of [Ir(NH3)6]4[Fe(CN)6]3·12H2O and [Rh(NH3)6]4[Fe(CN)6]3·12H2O can be considered as a method for producing nanoalloys or oxide systems based on iron and iridium (rhodium).

About the authors

A. A Popov

Nikolaev Institute of Inorganic Chemistry SB RAS

Email: apopov@nic.nsc.ru
Novosibirsk, Russia

P. E Plyusnin

Nikolaev Institute of Inorganic Chemistry SB RAS

Novosibirsk, Russia

L. S Kibis

Boreskov Institute of Catalysis SB RAS

Novosibirsk, Russia

T. S Sukhikh

Nikolaev Institute of Inorganic Chemistry SB RAS

Novosibirsk, Russia

S. V Korenev

Nikolaev Institute of Inorganic Chemistry SB RAS

Novosibirsk, Russia

References

  1. Hughes A.E., Haque N., Northey S.A. et al. // Resources. 2021. V. 10. N. 9. P. 1. https://doi.org/10.3390/resources10090093
  2. Jin Z., Xu Y., Chhetri M. et al. // Chem. Eng. J. 2024. V. 491. P. 152072. https://doi.org/10.1016/j.cej.2024.152072
  3. Tang S., Zhang Z., Xu L. et al. // J. Colloid Interface Sci. 2024. V. 669. P. 228. https://doi.org/10.1016/j.jcis.2024.04.204
  4. Patel P.P., Datta M.K., Velikokhatnyi O.I. et al. // J. Mater. Chem. A 2015. V. 3. N. 26. P. 14015. https://doi.org/10.1039/C5TA01362C
  5. Nyaaba A.A., Wei Z., Liu Y. et al. // J. Electroanal. Chem. 2024. V. 962. P. 118291. https://doi.org/10.1016/j.jelechem.2024.118291
  6. Choong C.K., Du Y., Poh C.K. et al. // Appl. Catal., B. 2024. V. 345. P. 123630. https://doi.org/10.1016/j.apcatb.2023.123630
  7. Xu Q., Wang P., Zakia M. et al. // Appl. Phys. A. 2023. V. 129. P. 514. https://doi.org/10.1007/s00339-023-06775-y
  8. Zhang Z., Xia Y., Ye M. et al. // Int. J. Hydrogen Energy. 2022. V. 47. N. 27. P. 13371. https://doi.org/10.1016/j.ijhydene.2022.02.078
  9. Yu Z., Si C., Lagrow A.P. et al. // ACS Catal. 2022. V. 12. N. 15. P. 9397. https://doi.org/10.1021/acscatal.2c01861
  10. Chen M.T., Duan J.J., Feng J.J. et al. // J. Colloid Interface Sci. 2022. V. 605. P. 888. https://doi.org/10.1016/j.jcis.2021.07.101
  11. Гимаев Р.Р., Ваулин А.А., Губкин А.Ф. и др. // Физика металлов и металловедение. 2020. Т. 121. № 9. С. 907
  12. Gibbons J., Dohi T., Amin V.P. et al. // Phys. Rev. Appl. 2022. V. 18. N. 2. P. 1. https://doi.org/10.1103/PhysRevApplied.18.024075
  13. Komlev A.S., Koroleva E.A., Shabalkin I.D. et al. // Mater. Chem. Phys. 2024. V. 314. P. 128855. https://doi.org/10.1016/j.matchemphys.2023.128855
  14. Руднева Ю.В., Коренев С.В. // Журн. неорган. химии. 2024. Т. 69. № 8. С. 1181. https://doi.org/10.31857/S0044457X24080112
  15. Garkul I.A., Zadesenets A.V., Filatov E.Y. et al. // Int. J. Hydrogen Energy. 2024. V. 82. P. 611. https://doi.org/10.1016/j.ijhydene.2024.07.446
  16. Zadesenets A.V., Garkul I.A., Filatov E.Y. et al. // Int. J. Hydrogen Energy. 2023. V. 48. N. 59. P. 22428. https://doi.org/10.1016/j.ijhydene.2023.01.365
  17. Smirnov P., Filatov E., Kuratieva N. et al. // Int. J. Mol. Sci. 2023. V. 24. N. 15. P. 12279. https://doi.org/10.3390/ijms241512279
  18. Plyusnin P.E., Gladysheva M.V., Shubin Y.V. et al. // Mater. Res. Bull. 2024. V. 180. P. 113051. https://doi.org/10.1016/j.materresbull.2024.113051
  19. Kohata S., Asakawa M., Maeda T. et al. // Anal. Sci. 1986. V. 2. N. 4. P. 325. https://doi.org/10.2116/anal.sci.2.325
  20. Юсенко К.В., Печенюк С.И., Викулова Е.С. и др. // Журн. структур. химии. 2019. Т. 60. № 7. С. 1110.
  21. Гаркуль И.А. Двойные комплексные оксалаты Pd и Rh c 3d-металлами как предшественники биметаллических систем: дис… канд. хим. наук, Новосибирск, 2023. 135 с.
  22. Варыгин А.Д., Попов А.А., Громилов С.А. и др. // Журн. структур. химии. 2023. Т. 64. № 7. С. 113132. https://doi.org/10.26902/JSC_id113132
  23. Попов А.А., Плюснин П.Е., Тяпкин П.Ю. и др. // Журн. неорган. химии. 2025. Т. 70. № 5. С. 697 https://doi.org/10.31857/S0044457X25050094
  24. Bykov M., Yusenko K.V., Bykova E. et al. // Eur. J. Inorg. Chem. 2019. V. 2019. N. 32. P. 3667. https://doi.org/10.1002/ejic.201900488
  25. Galsbol F., Hansen S.K., Simonsen K. // Acta Chem. Scand. 1990. V. 44. P. 796.
  26. Шубин Ю.В., Коренев С.В., Юсенко К.В. и др. // Изв. РАН, сер. хим. 2002. № 1. С. 39.
  27. Накамото К. ИК-спектры и спектры КР неорганических и координационных соединений / Пер. с англ. под ред. Пентина Ю.А. М.: Мир, 1991.
  28. Bruker APEX3 software suite: APEX3 v.2019.1-0, SADABS v.2016/2, SAINT v.8.40a. Madison, WI, USA: Bruker Nano, 2005-2018.
  29. Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Adv. 2015. V. A71. N. 1. P. 3. https://doi.org/10.1107/S2053273314026370
  30. Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. C71. N. 1. P. 3. https://doi.org/10.1107/S2053229614024218
  31. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. N. 2. P. 339. https://doi.org/10.1107/S0021889808042726
  32. NETZSCH Proteus Thermal Analysis, v. 6.1.0. Selb. Bay- em, Germany: NETZSCH-Gerätebau GmbH, 2013.
  33. Powder Diffraction File, PDF-2/Release 2009, International Centre for Diffraction Data, USA (2009).
  34. Kraus W., Nolze G. // J. Appl. Crystallogr. 1996. V. 29. N. 3. P. 301. https://doi.org/10.1107/S0021889895014920
  35. Krumm S. // Mater. Sci. Forum 1996. V. 228-231. P. 183. https://doi.org/10.4028/www.scientific.net/MSF.228-231.183
  36. Tullberg A., Vannerberg N.-G. // Acta Chem. Scand. A. 1974. V. 28. P. 551.
  37. Longridge J.J., Rawson J.M., Davies J.E. // Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1998. V. C54. N. 7. P. IUC9800028. https://doi.org/10.1107/S0108270198099582
  38. Li Y.G., Zhu H.L., Tiekink E.R.T. // Acta Crystallogr., Sect. E: Struct. Reports Online. 2006. V. 62. N. 4. P. 760. https://doi.org/10.1107/S1600536806007525
  39. Katila T., Leskela M., Niinistö L. et al. // J. Solid State Chem. 1980. V. 35. N. 3. P. 341. https://doi.org/10.1016/0022-4596(80)90531-9
  40. Moulder J.F., Stickle W.F., Sobol P.E. et al. Handbook of X-ray Photoelectron Spectroscopy / Minnesota, USA: Perkin-Elmer Corp., Eden Prairie, 1992.
  41. Mansour A.N., Ko J.K., Waller G.H. et al. // ECS J. Solid State Sci. Technol. 2021. V. 10. N. 10. P. 103002. https://doi.org/10.1149/2162-8777/ac2591
  42. Nefedov V.I., Firsov M.N., Shaplygin I.S. // J. Electron Spectros. Relat. Phenomena. 1982. V. 26. N. 1. P. 65. https://doi.org/10.1016/0368-2048(82)87006-0
  43. McIntyre N.S., Zetaruk D.G. // Anal. Chem. 1977. V. 49. N. 11. P. 1521. https://doi.org/10.1021/ac50019a016
  44. Mills P., Sullivan J.L. // J. Phys. D. Appl. Phys. 1983. V. 16. N. 5. P. 723. https://doi.org/10.1088/0022-3727/16/5/005

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).