SOLID SOLUTIONS WITH PYROCHLORE-LIKE STRUCTURE IN THE Y2O3–Fe2O3–Ta2O5–WO3 SYSTEM

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The aim of this work is to synthesize and study the properties of the compound Y2Fe4/3W2/3O7, and pyrochlore-like solid solutions in the Y2O3–Fe2O3–Ta2O5–WO3 system. A method for obtaining Y2Fe4/3W2/3O7 has been developed based on the citrate method. It has been established for the first time that the compound has a layered pyrochlore-like structure described by sp. gr. R3. A study of the heat capacity of Y2Fe4/3W2/3O7 showed that, unlike Y2FeTaO7, the compound does not have polymorphic transitions in the entire temperature range of 25–1460°C. The existence of a continuous solid solution xY2FeTaO7–(1–x)Y2Fe4/3W2/3O7, as well as a limited solid solution xY1.85Fe1.15TaO7–(1–x)Y2Fe4/3W2/3O7, where x = 0.7–1, is shown. It was found that a solid solution of Y2Fe4/3+xW2/3O7 is not realized. The IR and Raman spectra of synthesized solid solutions are considered. The position of their absorption edge is determined.

About the authors

A. V Egorysheva

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Email: anna_egorysheva@rambler.ru
Moscow, Russia

E. F Popova

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Moscow, Russia

V. S Omelyanyuk

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Moscow, Russia

O. G Ellert

Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences

Moscow, Russia

S. Y Kottov

National Research Center "Kurchatov Institute"

Moscow, Russia

E. S Kulikova

National Research Center "Kurchatov Institute"

Moscow, Russia

References

  1. Valant M., Babu G.S., Vrcon M. et al. // J. Am. Ceram. Soc. 2012. V. 95. P. 644. https://doi.org/10.1111/j.1551-2916.2011.04801.x
  2. Krayzman V., Levin I., Woicik J.C. // Chem. Mater. 2007. V. 19. P. 932. https://doi.org/10.1021/cm062429g
  3. Talanov M.V. Pyrochlore Ceramics: Properties, Processing, and Applications / Еd. Chowdhury A. Amsterdam: Elsevier, 2022. P. 295. https://doi.org/10.1016/B978-0-323-90483-4.00008-8
  4. Huang S., Zhang J., Qin Y. et al. // J. Photochem. Photobiol. A: Chem. 2021. P. 404. https://doi.org/10.1016/j.jphotochem.2020.112947
  5. Yasuhara R., Ikesue A. // Optics Express. 2019. V. 27. P. 7485. https://doi.org/10.1364/OE.27.007485
  6. Krasnov A.G., Napalkov M.S., Vlasov et al. // Inorg. Chem. 2020. V. 59. P. 12385. https://doi.org/10.1021/acs.inorgchem.0c01472.
  7. Sreena T.S., Rao P.P., Raj A.K.V. et al. // Chem. Select. 2016. V. 1. P. 3413. https://doi.org/10.1002/slct.201600630
  8. Москвин А.С. // Журн. эксп. и теор. физики. 2021. Т. 159. С. 607. https://doi.org/10.31857/S0044451021040040
  9. Ellert O.G., Egorysheva A.V. Pyrochlore Ceramics: Properties, Processing, and Applications / Еd. Chowdhury A. Amsterdam: Elsevier, 2022. P. 315. https://doi.org/10.1016/B978-0-323-90483-4.00009-X
  10. Subramanian M.A., Toby B.H., Ramirez A.P. et al. // Science. 1996. V. 273. P. 81. https://doi.org/10.1126/science.273.5271.81
  11. Эллерт О.Г., Попова Е.Ф., Кирдянкин Д.И. и др. // Журн. неорган. химии. 2023. Т. 68. С. 1339. https://doi.org/10.31857/S0044457X23600937
  12. Egorysheva A.V., Ellert O.G., Popova E.F. et al. // Mendeleev Commun. 2023. V. 33. P. 519. https://doi.org/10.1016/j.mencom.2023.06.025
  13. Егорышева А.В., Попова Е.Ф., Тюрин А.И. и др. // Журн. неорган. химии. 2019. Т. 64. С. 1154. https://doi.org/10.1134/S0044457X19110059
  14. Ellert O.G., Popova E.F., Kirdyankin D.I. et al. // Mendeleev Commun. 2024. V. 34. P. 291. https://doi.org/10.1016/j.mencom.2024.02.043
  15. Filoti G., Rosenberg M., Kuncser V. et al. // J. Alloys Compd. 1998. V. 268. P. 16. https://doi.org/10.1016/S0925-8388(97)00621-X
  16. Subramanian M.A., Aravamudan G., Rao G.V.S. // Prog. Solid State Chem. 1983. V. 15. P. 55. https://doi.org/10.1016/0079-6786(83)90001-8
  17. Dias A., Khalam L.A., Sebastian M.T. et al. // Chem. Mater. 2008. V. 20. P. 5253. https://doi.org/10.1021/cm800969m
  18. Li L., Zheng Y.-L., Hu Y.-X. et al. // Chin. Phys. B. 2020. V. 29. P. 083301. https://doi.org/10.1088/1674-1056/ab8a3d
  19. Joseph C., Bourson P.M., Fontana M.D. // J. Raman Spectrosc. 2012. V. 43. P. 1146. https://doi.org/10.1002/jrs.3142
  20. Jia S., Zhou Q., Huang F. et al. // AIP Advances. 2020. V. 10. P. 065324. https://doi.org/10.1063/5.0009821
  21. Diaz-Anichtchenko D., Aviles-Coronado J.E., Lopez-Moreno S. et al. // Inorg. Chem. 2024. V. 63. P. 6898. https://doi.org/10.1021/acs.inorgchem.4c00345
  22. Weber M.C., Guennou M., Zhao H.J. et al. // Phys. Rev. B. 2016. V. 94. P. 214103. https://doi.org/10.1103/PhysRevB.94.214103
  23. Saha J., Jana Y.M., Mukherjee G.D. et al. // Mater. Chem. Phys. 2020. V. 240. P. 122286. https://doi.org/10.1016/j.matchemphys.2019.122286
  24. Burcham L.J., Wachs I.E. // Spectrochim. Acta, Part A. 1998. V. 54. P. 1355. https://doi.org/10.1016/S1386-1425(98)00036-5
  25. Sousa M.H., Tourinho F.A., Rubim J.C. // J. Raman Spectrosc. 2000. V. 31. P. 185. https://doi.org/10.1002/(SICI)0971-4555(200005)31:3<185>AI>JIRSSI>10.1002>

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).