BORON OXIDE AS A SINTERING ADDITIVE FOR SILICON-ALUMINIUM OXYNITRIDES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Interaction of β-sialons Si5AlON7 and Si4Al2O2N6 with a boron oxide was studied. Boron oxide was introduced in the form of boric acid, the acid content was set up at 0.5wt.% and 5.0wt.%. Samples were sintered at 1650°C in the stream of N2 for 2h. It was found that all the samples showed higher densities against those for samples sintered with no aids, however, the densities were still lower as compared to theoretical levels. In most cases disproportionation of the basic phase into phases enriched with aluminum (Si3Al6O12N2) and silicon (Si2N2O) occurred. Moreover, when Si4Al2O2N6 was sintered with an addition of 0.5wt.% of boric acid, a noticeable amount of SiO2 was also formed. Sintering of Si5AlON7 with an addition of boric acid did not lead to sufficient changes in microhardness and bending strength. In contrast, sintering of Si4Al2O2N6 sintered with an addition of 0.5wt.% of boric acid resulted in an increase in bending strength by ~14%, however, an addition of 5.0wt.% of boric acid caused a decrease in hardness by ~9% and a drop in bending strength by ~36%.

About the authors

N. S Akhmadullina

A.A. Baikov Institute of Metallurgy and Materials Science of Russian Academy of Sciences

Email: nakhmadullina@mail.ru
Moscow, Russia

V. P Sirotinkin

A.A. Baikov Institute of Metallurgy and Materials Science of Russian Academy of Sciences

Moscow, Russia

A. S Lysenkov

A.A. Baikov Institute of Metallurgy and Materials Science of Russian Academy of Sciences

Moscow, Russia

K. A Kim

A.A. Baikov Institute of Metallurgy and Materials Science of Russian Academy of Sciences

Moscow, Russia

S. V Fedorov

A.A. Baikov Institute of Metallurgy and Materials Science of Russian Academy of Sciences

Moscow, Russia

Yu. F Kargin

A.A. Baikov Institute of Metallurgy and Materials Science of Russian Academy of Sciences

Moscow, Russia

References

  1. Kargin Yu.F., Akhmadullina N.S., Solntsev K.A. // Inorg. Mater. 2014. V. 50. N. 13. P. 1325. https://doi.org/10.1134/S0020168514130032
  2. Ахмадуллина Н.С., Шишилов О.Н., Каргин Ю.Ф. // Изв. Акад. наук. Сер. хим. 2020. Т. 69. № 5. С. 825. https://doi.org/10.1007/s11172-020-2841-4
  3. Yan D.-S. // Pure Appl. Chem. 1998. V. 70. N. 2. P. 509. https://doi.org/10.1351/pac199870020509
  4. Kurama S., Hermann M., Mandal H. // J. Eur. Ceram. Soc. 2002. V. 22. N. 1. P. 109. https://doi.org/10.1016/S0955-2219(01)00237-0
  5. Thompson D.P. // Nature. 2002. V. 417. P. 237. https://doi.org/10.1038/417237a
  6. Jack K.H. // J. Mater. Sci. 1976. V. 11. N. 6. P. 1135. https://doi.org/10.1007/BF02396649
  7. Gauckler L.J., Lukas H.L., Petzow G. // J. Am. Ceram. Soc. 1975. V. 58. N. 7-8. P. 346. https://doi.org/10.1111/j.1151-2916.1975.tb11502.x
  8. Hampshire S. Encyclopedia of Materials: Technical Ceramics and Glasses. V. 2. Elsevier, 2021. P. 119. https://doi.org/10.1016/B978-0-12-818542-1.00105-3
  9. Jack K.H., Wilson W.I. // Nat. Phys. Sci. 1972. V. 238. P. 28. https://doi.org/10.1038/physci238028a0
  10. Cao G.Z., Metselaar R. // Chem. Mater. 1991. V. 3. P. 242. https://doi.org/10.1021/cm00014a009
  11. Wang H., Chen J., Liu Y.G. et al. // Interceram — Int. Ceram. Rev. 2015. V. 64. P. 112. https://doi.org/10.1007/BF0340111
  12. Anya C.C., Hendry A. // J. Mater. Sci. 1994. V. 29. P. 527. https://doi.org/10.1007/BF01162517
  13. Thompson D.P., Korgul P. // Prog. Nitrogen Ceram. 1983. V. 321. P. 375. https://doi.org/10.1007/978-94-009-6851-6_32
  14. Ekstrom T., Nygren M. // J. Am. Ceram. Soc. 1992. V. 75. P. 259. https://doi.org/10.1111/j.1151-2916.1992.tb08175.x
  15. Biswas M., Bandyopadhyay S., Sarkar S. // J. Alloys Compd. 2018. V. 768. P. 130. https://doi.org/10.1016/j.jallcom.2018.07.133
  16. Qin H., Li Y., Long M. et al. // J. Am. Ceram. Soc. 2018. V. 101. P. 1870. https://doi.org/10.1111/jace.15385
  17. Jack K.H. // Mater. Sci. Res. 1978. V. 11. P. 561. https://doi.org/10.1007/978-1-4684-3378-4_47
  18. Oyama Y., Kamigaito O. // Jpn. J. Appl. Phys. 1971. V. 10. P. 1637. https://doi.org/10.1143/JJAP.10.1637
  19. Ekstrom T., Kall P.O., Nygren M., Olsson P.O. // J. Mater. Sci. 1989. V. 24. N. 5. P. 1853. https://doi.org/10.1007/BF01105715
  20. Hampshire S. // Mater. Sci. Forum. 2009. V. 606. P. 27. https://doi.org/10.4028/www.scientific.net/MSF.606.27
  21. Jiang H., Xu J.H., Zhang X.H. et al. // J. Chin. Ceram. Soc. 2012. V. 40. P. 970.
  22. Wu H.T., Mei Q.J., Xing C.F., Bi J.X. // J. Alloys Compd. 2016. V. 679. P. 26. https://doi.org/10.1016/j.jallcom.2016.04.046
  23. Shu G.J., Yuan S.F., Pang J.B. et al. // Bull. Chin. Ceram. Soc. 2021. V. 40. P. 3305.
  24. Sun J., Su Y., Zhao Q., Wang G. // Appl. Sci. 2024. V. 14. P. 11179. https://doi.org/10.3390/app142311179
  25. Rai K., Kundu S. // J. Power Sources. 2023. V. 576. P. 233229. https://doi.org/10.1016/j.jpowsour.2023.233229
  26. Saffirio S., Falco M., Appetecchi G.B., Smeacetto F., Gerbaldi C. // J. Eur. Ceram. Soc. 2022. V. 42. P. 1023. https://doi.org/10.1016/j.jeurceramosc.2021.11.014
  27. Slubowska W., Montagne L., Lafon O. et al. // Nanomaterials. 2021. V. 11. P. 390. https://doi.org/10.3390/nano11020390
  28. Akhmadullina N.S., Lysenkov A.S., Konovalov A.A. et al. // Ceram. Int. 2022. V. 48. N. 9. P. 13348. https://doi.org/10.1016/j.ceramint.2022.01.215
  29. Akhmadullina N.S., Sirotinkin V.P., Ovsyannikov N.A. et al. // Inorganics. 2022. V. 10. P. 140. https://doi.org/10.3390/inorganics10090140
  30. Ахмадуллина Н.С., Сиротинкин В.П., Ким К.А. и др. // Неорган. материалы. 2023. Т. 59. № 9. С. 1010. https://doi.org/10.1134/S0020168523090017
  31. Sevim F., Demir F., Bilen M., Okur H. // Korean J. Chem. Eng. 2006. V. 23. N. 5. P. 736. https://doi.org/10.1007/BF02705920
  32. Ахмадуллина Н.С., Ким К.А., Сиротинкин В.П. и др. // Бюл. “Изобретения. Полезные модели”. 2024. № 12. RU 2818183 C1.
  33. Yi X., Watanabe K., Akiyama T. // J. Ceram. Soc. Jpn. 2010. V. 118. N. 3. P. 250.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).