SYNTHESIS, STRUCTURE, AND OPTICAL PROPERTIES OF CYCLOMETALATED IRIDIUM(III) COMPLEXES WITH 1,2-DIPHENYLBENZIMIDAZOLE AND N-SUBSTITUTED PERIMIDINES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Two novel bis-cyclometalated iridium(III) complexes with 1,2-diphenylbenzimidazole (pbi) and ancillary 1-methyl-2-(pyridin-2-yl)-1H-perimidine (L1, complex 1) and ethyl 2-(2-(pyridin-2-yl)-1H-perimidin-1-yl)acetate (L2, complex 2) were synthesized and characterized by set of physicochemical methods. Comparison of the results of crystal packing analysis and electronic absorption spectroscopy demonstrates that while exclusion of the rigid perimidine system from conjugation does not allow red-shifting of absorption maxima, both complexes exhibit broad absorption up to 600 nm (ε = 27 000 − 800 M-1 cm-1), comparable to iridium analogs. The results of the study clarify the influence of steric factors on the absorption properties of the complexes and will be used for further development of strongly light-absorbing materials.

About the authors

M. A Kiseleva

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Moscow, Russia

S. I Bezzubov

Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: bezzubov@igic.ras.ru
Moscow, Russia

References

  1. Longhi E., De Cola L. Iridium(III) Complexes for OLED Application, in: Iridium(III) Optoelectron. Photonics Appl. Chichester / Wiley, 2017. https://doi.org/10.1002/9781119007166.ch6
  2. Wang S.-F., Su B.-K., Wang X.-Q. et al. // Nat. Photonics. 2022. V. 16. № 12. P. 843. https://doi.org/10.1038/s41566-022-01079-8
  3. Wang X., Wu C., Tong K. et al. // Adv. Opt. Mater. 2025. V. 13. № 12. P. 2403273. https://doi.org/10.1002/adom.202403273
  4. Muñoz-García A.B., Benesperi I., Boschloo G. et al. // Chem. Soc. Rev. 2021. V. 50. № 22. P. 12450. https://doi.org/10.1039/D0CS01336F
  5. Bodedla G.B., Zhu X., Zhou Z. et al. // Top. Curr. Chem. 2022. V. 380. № 6. P. 49. https://doi.org/10.1007/s41061-022-00404-7
  6. Légalité F., Escudero D., Pellegrin Y. et al. // Dye. Pigment. 2019. V. 171. P. 107693. https://doi.org/10.1016/j.dyepig.2019.107693
  7. Tritton D.N., Tang F.-K., Bodedla G.B. et al. // Coord. Chem. Rev. 2022. V. 459. P. 214390. https://doi.org/10.1016/j.ccr.2021.214390
  8. Bawden J.C., Francis P.S., DiLuzio S. et al. // J. Am. Chem. Soc. 2022. V. 144. № 25. P. 11189. https://doi.org/10.1021/jacs.2c02011
  9. Ruggeri D., Hoch M., Spataro D. et al. // Chem. Eur. J. 2025. V. 31. № 18. P. E202403309. https://doi.org/10.1002/chem.202403309
  10. Nykhrikova E.V., Kiseleva M.A., Kalle P. et al. // Inorg. Chem. 2025. V. 64. № 10. P. 5210. https://doi.org/10.1021/acs.inorgchem.5c00155
  11. Kostova I. // Molecules. 2025. V. 30. № 4. P. 801. https://doi.org/10.3390/molecules30040801
  12. Krasnov L., Tatarin S., Smirnov D. et al. // Sci. Data. 2024. V. 11. № 1. P. 870. https://doi.org/10.1038/s41597-024-03735-w
  13. Milaeva E.R. // Russ. J. Coord. Chem. 2024. V. 50. № 12. P. 1043. https://doi.org/10.1134/S1070328424600815
  14. Aghazada S., Gao P., Yella A. et al. // Inorg. Chem. 2016. V. 55. № 13. P. 6653. https://doi.org/10.1021/acs.inorgchem.6b00842
  15. Han G., Li G., Huang J. et al. // Nat. Commun. 2022. V. 13. № 1. P. 1. https://doi.org/10.1038/s41467-022-29981-3
  16. Ботезату А., Токарев С.Д., Федоров Ю.В. и др. // Журн. неорган. химии. 2024. Т. 69. № 12. С. 1805. https://doi.org/10.31857/S0044457X24120133
  17. Colombo A., Dragonetti C., Fagnani F. et al. // Electronics. 2025. V. 14. № 8. P. 1639. https://doi.org/10.3390/electronics14081639
  18. Vigueras G., Gasser G., Ruiz J. // Dalton Trans. 2025. V. 54. № 4. P. 1320. https://doi.org/10.1039/D4DT03014A
  19. Li M., Wang L., You C. et al. // Dalton Trans. 2023. V. 52. № 44. P. 16276. https://doi.org/10.1039/D3DT02629A
  20. DiLuzio S., Connell T.U., Mdluli V. et al. // J. Am. Chem. Soc. 2022. V. 144. № 3. P. 1431. https://doi.org/10.1021/jacs.1c12059
  21. De Kreijger S., Schott O., Troian-Gautier L. et al. // Inorg. Chem. 2022. V. 61. № 13. P. 5245. https://doi.org/10.1021/acs.inorgchem.1c03727
  22. Tatarin S. V., Meshcheriakova E.A., Kozyukhin S.A. et al. // Dalton Trans. 2023. V. 52. № 44. P. 16261. https://doi.org/10.1039/D3DT02789A
  23. Wang Y., Huang Y., Chen S. et al. // Inorg. Chem. 2023. V. 62. № 19. P. 7212. https://doi.org/10.1021/acs.inorgchem.2c04471
  24. Звездина С.В., Чижова Н.В., Мамардашвили Н.Ж. // Журн. неорган. химии. 2024. Т. 69. № 11. С. 1565. https://doi.org/10.31857/S0044457X24110064
  25. Zhang H., Wang H., Tanner K. et al. // Dalton Trans. 2021. V. 50. № 30. P. 10629. https://doi.org/10.1039/d1dt01557e
  26. Hohlfeld B.F., Gitter B., Kingsbury C.J. et al. // Chem. Eur. J. 2021. V. 27. № 21. P. 6440. https://doi.org/10.1002/chem.202004776
  27. Sahiba N., Agarwal S. // Top. Curr. Chem. 2020. V. 378. № 4–5. P. 44. https://doi.org/10.1007/s41061-020-00307-5
  28. Kalle P., Kiseleva M.A., Tatarin S.V. et al. // Molecules. 2022. V. 27. № 10. P. 3201. https://doi.org/10.3390/molecules27103201
  29. Bobo M.V., Paul A., Robb A.J. et al. // Inorg. Chem. 2020. V. 59. № 9. P. 6351. https://doi.org/10.1021/acs.inorgchem.0c00456
  30. Bezzubov S.I., Zharinova I.S., Khusyainova A.A. et al. // Eur. J. Inorg. Chem. 2020. V. 2020. № 34. P. 3277. https://doi.org/10.1002/ejic.202000372
  31. Tatarin S.V., Smirnov D.E., Taydakov I.V. et al. // Dalton Trans. 2023. V. 52. № 19. P. 6435. https://doi.org/10.1039/D3DT00200D
  32. Liao H.-S., Xia X., Hu Y.-X. et al. // Synth. Met. 2022. V. 291. P. 117195. https://doi.org/10.1016/j.synthmet.2022.117195
  33. Kalle P., Tatarin S.V., Zakharov A.Y. et al. // Acta Crystallogr., Sect. E: Crystallogr. Commun. 2021. V. 77. № 2. P. 96. https://doi.org/10.1107/S205698902100013X
  34. Смирнов Д.Е., Татарин С.В., Киселева М.А. и др. // Журн. неорган. химии. 2023. Т. 68. № 9. С. 1202. https://doi.org/10.31857/S0044457X23601049
  35. Sheldrick G.M. // SADABS. Version 2008/1. 2008. Bruker AXS Inc. Germany.
  36. Sheldrick G.M. // Acta Crystallogr., Sect. A: Found. Adv. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053273314026370
  37. Sheldrick G.M. // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/s2053229614024218
  38. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339. https://doi.org/10.1107/s0021889808042726
  39. Petrícek V., Dušek M., Palatinus L. // Z. Kristallogr. 2014. V. 229. № 5. P. 345. https://doi.org/10.1515/zkri-2014-1737
  40. Bondi A. // J. Phys. Chem. 1964. V. 68. № 3. P. 441. https://doi.org/10.1021/j100785a001
  41. Rowland R.S., Taylor R. // J. Phys. Chem. 1996. V. 100. № 18. P. 7384. https://doi.org/10.1021/jp953141+
  42. Bezzubov S.I., Doljenko V.D., Troyanov S.I. et al. // Inorg. Chim. Acta. 2014. V. 415. P. 22. https://doi.org/10.1016/j.ica.2014.02.024

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».