Phase formation and optical properties of vanadium-doped aluminum oxynitride

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The phase formation, morphology, and optical properties of aluminum oxynitride (Al5O6N) doped with vanadium ions were studied in the concentration range of 0.01–5.0 at. % (relative to aluminum). All samples were obtained by calcining mixtures of Al2O3, AlN, and V2O5 at a temperature of 1750°C in a nitrogen flow. The resulting materials were predominantly single-phase γ-AlON with minor impurities of aluminum nitride, as well as VC, VN, VO, or their solid solutions, for vanadium concentrations of ≥0.1 at. %. In AlON:V, the band gap (Eg) ranges from 5.82 to 5.94 eV, depending on the vanadium concentration. The luminescence of AlON:V is attributed to intrinsic defects and impurity luminescence centers. The presence of vanadium in AlON results in an increase in the optical absorption and a decrease in the intensity of intrinsic luminescence, which is caused by the formation of vanadium-containing impurity phases.

About the authors

A. V. Ishchenko

Ural Federal University named after the first President of Russia B.N. Yeltsin

Email: a-v-i@mail.ru
Mira str., 19, Yekaterinburg, 620002 Russia

N. S. Akhmadullina

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: a-v-i@mail.ru
Leninsky Prospekt, 49, Moscow, 119334 Russia

I. I. Leonidov

Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences

Email: a-v-i@mail.ru
Pervomaiskaya str., 91, Yekaterinburg, 620077 Russia

V. P. Sirotinkin

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: a-v-i@mail.ru
Leninsky Prospekt, 49, Moscow, 119334 Russia

I. A. Weinstein

Ural Federal University named after the first President of Russia B.N. Yeltsin; Institute of Metallurgy, Ural Branch, Russian Academy of Sciences

Email: a-v-i@mail.ru
Mira str., 19, Yekaterinburg, 620002 Russia; Amundsen str., 101, Yekaterinburg, 620016 Russia

Yu. F. Kargin

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Author for correspondence.
Email: a-v-i@mail.ru
Leninsky Prospekt, 49, Moscow, 119334 Russia

References

  1. Mittal D., Hostaša J., Silvestroni L. et al. // J. Eur. Ceram. Soc. 2022. V. 42. № 14. P. 6303. https://doi.org/10.1016/j.jeurceramsoc.2022.06.080
  2. Zgalat-Lozynskyy O., Tischenko N., Shirokov O. et al. // J. Mater. Eng. Perform. 2022. V. 31. № 3. P. 2575. https://doi.org/10.1007/s11665-021-06381-0
  3. Jian X., Wang H., Lee M.-H.H. et al. // Materials (Basel). 2017. V. 10. № 7. P. 723. https://doi.org/10.3390/ma10070723
  4. Chen C.F., Yang P., King G. et al. // J. Am. Ceram. Soc. 2016. V. 99. № 2. P. 424. https://doi.org/10.1111/jace.13986
  5. Akhmadullina N.S., Ishchenko A.V., Yagodin V.V. et al. // Inorg. Mater. 2019. V. 55. № 12. P. 1223. https://doi.org/10.1134/S002016851912001X
  6. Zhang L., Luo H., Zhou L. et al. // J. Am. Ceram. Soc. 2018. V. 101. № 8. P. 3299. https://doi.org/10.1111/jace.15494
  7. Ayman M.T., Chung W.J., Lee H. et al. // J. Eur. Ceram. Soc. 2022. V. 42. № 4. P. 1348. https://doi.org/10.1016/j.jeurceramsoc.2021.12.015
  8. Chen L., Du F., Liang Y. et al. // Displays. 2022. V. 71. P. 102147. https://doi.org/10.1016/j.displa.2021.102147
  9. Akhmadullina N.S., Ishchenko A. V., Lysenkov A.S. et al. // J. Alloys Compd. 2021. V. 887. P. 161410. https://doi.org/10.1016/j.jallcom.2021.161410
  10. Zhang J., Ma C., Wen Z. et al. // Opt. Mater. (Amst). 2016. V. 58. P. 290. https://doi.org/10.1016/j.optmat.2016.05.048
  11. Shao Z., Ren S. // Nanoscale Adv. 2020. V. 2. № 10. P. 4341. https://doi.org/10.1039/D0NA00519C
  12. Latief U., Islam S.U., Khan M.S. // J. Alloys Compd. 2023. V. 941. P. 168985. https://doi.org/10.1016/j.jallcom.2023.168985
  13. Fuertes V., Fernández J.F., Enríquez E. // Optica. 2019. V. 6. № 5. P. 668. https://doi.org/10.1364/OPTICA.6.000668
  14. Yao A., Zhou X., Wu W. et al. // Chem. Phys. 2021. V. 546. P. 111170. https://doi.org/10.1016/j.chemphys.2021.111170
  15. Liu L., Zhang J., Wang X. et al. // Mater. Lett. 2020. V. 258. P. 126811. https://doi.org/10.1016/j.matlet.2019.126811
  16. Dong Q., Yang F., Cui J. et al. // Ceram. Int. 2019. V. 45. № 9. P. 11868. https://doi.org/10.1016/j.ceramint.2019.03.069
  17. Ishchenko A.V., Akhmadullina N.S., Leonidov I.I. et al. // J. Alloys Compd. 2023. V. 934. P. 167792. https://doi.org/10.1016/j.jallcom.2022.167792
  18. Ishchenko A.V., Akhmadullina N.S., Leonidov I.I. et al. // Phys. B Condens. Matter 2024. V. 695. P. 416593. https://doi.org/10.1016/j.physb.2024.416593
  19. Ищенко А.В., Ахмадуллина Н.С., Пастухов Д.А. и др. // Неорганические материалы 2024. V. 60. № 3. P. 322. https://doi.org/10.31857/S0002337X24030083
  20. Diana P., Sebastian S., Saravanakumar S. et al. // Phys. Scr. 2023. V. 98. № 3. P. 035825. https://doi.org/10.1088/1402-4896/acb7b1
  21. Dorn M., Kalmbach J., Boden P. et al. // J. Am. Chem. Soc. 2020. V. 142. № 17. P. 7947. https://doi.org/10.1021/jacs.0c02122
  22. Đačanin Far L., Dramićanin M. // Nanomaterials. 2023. V. 13. № 21. P. 2904. https://doi.org/10.3390/nano13212904
  23. Pan J., Hansen H.A., Vegge T. // J. Mater. Chem. A 2020. V. 8. № 45. P. 24098. https://doi.org/10.1039/D0TA08313E
  24. Шестаков В.А., Селезнев В.А., Мутилин С.В. и др. // Журн. неорган. химии. 2023. Т. 68. № 5. С. 651. https://doi.org/10.31857/S0044457X23600019
  25. Подвальная Н.В., Захарова Г.С. // Журн. неорган. химии. 2023. Т. 68. № 3. С. 300. https://doi.org/10.31857/S0044457X22601389
  26. Сидоров И., Жилинский В.В., Новиков В.П. // Неорган. материалы. 2023. Т. 59. № 6. С. 638. https://doi.org/10.31857/S0002337X23060131
  27. Akhmadullina N.S., Lysenkov A.S., Konovalov A.A. et al. // Ceram. Int. 2022. V. 48. № 9. P. 13348. https://doi.org/10.1016/j.ceramint.2022.01.215
  28. Doebelin N., Kleeberg R. // J. Appl. Crystallogr. 2015. V. 48. № 5. P. 1573. https://doi.org/10.1107/S1600576715014685
  29. Solomonov V.I., Michailov S.G., Lipchak A.I. et al. // Laser Phys. 2006. V. 16. № 1. P. 126. https://doi.org/10.1134/S1054660X06010117
  30. Ларионов В.А., Гуляева Р.И., Нифонтова Е.А. // Неорган. материалы. 2023. Т. 59. № 1. С. 61. https://doi.org/10.31857/S0002337X23010141
  31. Batyrev I.G., Taylor D.E., Gazonas G.A. et al. // J. Appl. Phys. 2014. V. 115. № 2. P. 023505. https://doi.org/10.1063/1.4859435
  32. Каргин Ю.Ф., Ахмадуллина Н.С., Лысенков А.С. и др. // Журн. неорган. химии. 2020. Т. 65. № 9. С. 1192. https://doi.org/10.31857/S0044457X20090056
  33. Guo J.J., Wang K., Fujita T. et al. // Acta Mater. 2011. V. 59. № 4. P. 1671. https://doi.org/10.1016/j.actamat.2010.11.034
  34. Zheng K., Wang H., Xu P. et al. // J. Eur. Ceram. Soc. 2021. V. 41. № 7. P. 4319. https://doi.org/10.1016/j.jeurceramsoc.2021.02.047
  35. Kudyakova V.S., Leonidov I.I., Chaikin D.V. et al. // Ceram. Int. 2021. V. 47. № 12. P. 16876. https://doi.org/10.1016/j.ceramint.2021.02.263
  36. Алтахов А.С., Горбунов Р.И., Кашарина Л.А. и др. // Письма в журнал технической физики 2016. Т. 42. № 21. С. 32. https://doi.org/10.21883/PJTF.2016.21.43838.16357
  37. Kubelka P., Munk F. // Z. Tech. Phys 1931. V. 12. P. 593.
  38. Du X., Yao S., Jin X. et al. // J. Phys. D. Appl. Phys. 2015. V. 48. № 34. P. 345104. https://doi.org/10.1088/0022-3727/48/34/345104
  39. Tauc J. // Mater. Res. Bull. 1968. V. 3. № 1. P. 37. https://doi.org/10.1016/0025-5408(68)90023-8
  40. Zhang X., Gao S., Li Z. et al. // Ceram. Int. 2019. V. 45. № 6. P. 7778. https://doi.org/10.1016/j.ceramint.2019.01.082
  41. Spiridonov D.M., Weinstein I.A., Vokhmintsev A.S. et al. // Bull. Russ. Acad. Sci. Phys. 2015. V. 79. № 2. P. 211. https://doi.org/10.3103/S106287381502029X

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).